
Fifth International Conference on Internet of Things and Applications (IoT 2021)

MRMC-CAN: A Method to Improve Real-Timeness and

Response Time of CAN

Ismail Ghodsollahee

Dependable Distributed Embedded

Systems (DDEms) Laboratory,

Department of Computer Engineering,

Ferdowsi University of Mashhad,

Mashhad, Iran.

Yasser Sedaghat

Dependable Distributed Embedded

Systems (DDEms) Laboratory,

Department of Computer Engineering,

Ferdowsi University of Mashhad,

Mashhad, Iran.

Abstract— Although the Industrial Internet of Things (IIoT) has

made great improvement in factory automation, there are still

many challenges in meeting response time and reliability

requirements of IIoT communications. These challenges are

because of the need to real-time communications in an industrial

environment with high electromagnetic interferences. To meet

these challenges, in context of real-time industrial device

communications, Controller Area Network (CAN) protocol is

commonly employed, which is noise resistance, nevertheless the

presence of a faulty node in CAN networks can lead to deadline

violation of messages and timing failure. In this paper, to control

the behavior of nodes, message retransmission performed based

on criticality of message reception (MRMC-CAN). The proposed

method in comparison with standard CAN and WCTER-based

approaches reduces consumed bandwidth by average 10.5% and

4.4%, respectively. Moreover, the proposed technique improves

response time in comparison with standard CAN by average

36.19%.

Keywords: Controller Area Network (CAN), Industrial Internet

of Things (IIoT), Real-Timeness, Reliability, Error Handling.

I. INTRODUCTION

The CAN communication protocol was designed in the
1980s by Robert Bosch for vehicular internal network. This
communication protocol is one of the mostly employed
communication protocol in vehicular networks due to its low
implementation cost and its fault tolerant behaviour against
network errors [1]. Today this communication protocol is
employed in other industrial fields and IIoT in addition to
vehicular internal networks [2, 3].

IIoT systems are safety-critical in nature [4]. These systems
require error handling and real-timeness in their
communications [5, 6]. However, since in the CAN
communication protocol, to deal with communication errors,
corrupted message is retransmitted after any type of error
detection, and given that this communication protocol employs
the carrier sense multiple access with collision detection
(CSMA/CD), retransmission of messages is in conflict with
real-time constraint required in the safety-critical systems [7].

There are five different type of errors in the CAN
communication protocol, including Bit Error, Stuff Error,
Cyclic Redundancy Check (CRC) Error, Form Error, and
Acknowledgment Error. Among these errors, CRC Error is

detected by receiver nodes if there is any differences between
received and computed CRC, and the Acknowledgment Error
is detected by the sender node if this node does not receive any
acknowledgement from the receiver nodes.

In the CAN communication protocol, the correctness of
message reception is determined by the content of ACK field.
As shown in Figure 1, ACK field consist of ACK slot and
ACK diameter. Sender node leaves the ACK slot recessive and
waits for acknowledgment. The correct reception of messages
will have acknowledged after CRC checking, through changing
the ACK slot to dominant by each receiver node. If ACK slot
does not changed to dominant, it means that an incorrect
message detected by all receiver nodes. In this case, the sender
node, detects acknowledgment error, and retransmit
unacknowledged frame.

Figure 1. CAN ACK field format

Although the acknowledgement process employed in the
CAN communication protocol assures the sender that the
message has been received correctly by all nodes, the dominant
bit sent in the ACK slot by one of the receiver node which
detects the correctness of received message, prevents the
sender node from identifying the nodes that received the
message incorrectly. In such a situation, as shown in Figure 2,
the sender’s ignorance of which nodes received the message
incorrectly, prevents the sender node from making the right
decision about the need to retransmit unacknowledged frame.

Figure 2. Acknowledgement Process

Fifth International Conference on Internet of Things and Applications (IoT 2021)

Any node which detects CRC Error will issue an error flag
to notify the sender node about incorrect reception of the
message. As shown in Figure 3, although sending an error
frame notifies the sender node about incorrect reception,
recovery time from detecting an error until the start of the next
message is 18 bit times and can be at most 31 bit times [8].
Therefore, to improve the real-timeness of CAN network, in
this paper, the MRMC-CAN technique is presented. This
technique gives the sender node the knowledge of which nodes
did not receive the message correctly. This knowledge allows
the sender node to decide whether retransmit the message or
not.

Figure 3. Bit sequence after CRC Error detection

The rest of this paper is organized as follows. The related
studies are investigated in Section II, then proposed technique
is illustrated in Section III. The response time presented in
Section IV. Section V describes the experimental results and
evaluation. Finally, conclusion are presented in Section VI.

II. RELATED STUDIES

Since non-violation of message deadlines and timing
verification is the key to ensuring vehicle safety during the
design phase [9], papers [10, 28] focus on the CAN worst case
response-time improvement through consumed bandwidth
reduction. CAN worst case response-time defined as the
longest time taken for messages to reach their destinations,
which measured relative to the arrival time of messages [10].

One way to reduce bandwidth consumption is to prevent
offending node from connecting to the CAN network.
Network Guardian (NG) is commonly employed to prevent
babbling idiot failure which is caused by offending nodes [11],
[12]. Although employing of NG prevents the high bandwidth
overhead caused by faulty nodes, the level of babbling that NG
prevents the node from sending a message to the network is the
same for all messages. For this reason, an analysis for the
Guardian based approach is presented in [13]. In this analysis,
the number of retransmission of a messages is determined
based on the criticality level of the messages.

In addition to methods which prevents high traffic
consumption due to faulty nodes, others [14,17] prevents fault
propagation from one subnet to the others by changing linear
topology of the CAN network. In [14] by changing the
topology of the CAN network, the RedCAN is presented. In
RedCAN, after detecting physical defects in one sector to
prevent fault propagation, other nodes disconnect this sector
and employ redundant sector. Also Barranco and Proenza [15]

propose active star topology, called CANcentrate. In
CANcentrate central hub, prevents fault propagation. Although
CANcentrate prevents communication network failure due to
link faults, the active star topology hub, represents single point
of failure. As a result they present replicated active star
topology called ReCANcentrate which is based on the
hardware redundancy of the hub [16]. Moreover, in [17] a
shared clock algorithm named TTC-SC6 proposed which
ensures that fault on one link of star network cannot propagate
to the rest of the network via port disablement.

In contrast, a series of papers [18, 25], reduce bandwidth
consumption through data reduction (DR) techniques. In DR
techniques, the compression process is as follow, first a
message with the identifier ID’ is sent at t=t’, then the
subsequent messages with ID’ sent at t=t’+1 based on signals’
differences [18]. In DR technique presented in [19], the first
byte of compressed data frame is assigned to data compression
code (DCC). Each bit of DCC indicates whether or not one
byte of data frame compressed. In [20] Adaptive DR (ADR)
technique is presented. In ADR DCC is based on signals
instead of bytes. In addition ADR prevents the current frame
from being transmitted if it does not differ from previous one.

Although, ADR reduces the bandwidth consumption, in this
technique, if the value of one of the signal differences exceeds
the assigned data field, the whole message will be sent
uncompressed. Therefore, in [21], the improved ADR (IADR)
technique is presented. In this method, it is possible to send a
combination of compressed and uncompressed signals in one
message. Moreover, [18] proposes Enhanced DR (EDR)
technique, considering the overhead caused by DR techniques
and its effect on the bit length of the compressed message. In
EDR, a signal is sent compressed if it does not increase the
length of the compressed message compared to the
uncompressed message.

Assign Data field to signals based on the predicted
maximum bit length of signal differences (e.g., in boundary of
fifteen compression technique (BFC) [22], a signal is
compressed if its corresponding signal difference is within the
maximum compression rage of ±15 bits.) affect the
performance of DR techniques [21, 23]. Therefore, Wu and
Chung proposed efficient CAN DR (ECANDC) [23], and
improved CAN DR (ICANDR) [24] techniques based on signal
rearrangement algorithms (SRA). In these techniques,
compression area selection (MAP) is employed to eliminate the
prediction of the maximum signal differences bit length. In
ICANDR technique, CAN data field, divided into 24, 24, and
16 bit length sub fields. Each combination of signal mapping to
these subfields results in different compression efficiency. In
[25] a CAN data arrangement algorithm proposed to maximize
compression efficiency.

In addition to DR techniques, others reduce bandwidth
consumption through minimizing stuffing-bit. In CAN network
non return to zero (NRZ) coding employed to ensure
synchronization of all nodes. In this coding, an opposite
polarity bit is inserted after five consecutive bits with the same
polarity. Although, bit stuffing is a fault tolerant mechanism in
CAN which synchronize all nodes, Stuffing-bits can cause a
22% overhead in worst case [26]. For this reason Park and

Fifth International Conference on Internet of Things and Applications (IoT 2021)

Kang propose a bit stuffing mechanism based on XOR
masking to minimize stuffing-bits and prevent priority
inversion [26]. In their mechanism, messages are divided into
m groups, which each of them contain n identifiers. In this
mechanism first XOR mask initialized to “1010…”, then 1
assigned to 1 + [𝑙𝑜𝑔2𝑚] most significant bits and 0 is assigned
to [𝑙𝑜𝑔2𝑚] bits of XOR mask to prevent priority inversion.

Another category of real-timeness improvement and
consumed bandwidth reduction techniques is based on error
correction and prevention of message retransmission. In [7],
dual CRC error correction (DUCER) technique proposed,
which employs redundant communication channel and
lightweight error correction software scheme, which can
correct 5-bit errors. Classification of real-timeness
improvement techniques shows in Figure 4.

Figure 4. Classification of Methods for Real-Timeness Improvement of

CAN Network

III. PROPOSED METHOD

As mentioned earlier, corrupted messages are retransmitted
in the CAN communication protocol to deal with
communication errors, whereas, message retransmission is in
conflict with the real-time requirements of safety-critical
systems. For this reason, in this paper the MRMC-CAN is
presented, In MRMC-CAN decision to retransmission is made
at the receiver nodes. For this purpose, receiver nodes control
the message retransmission by controlling error flag
propagation based on the criticality of receiving a message.
The criticality of receiving a message is determined based on a
list of critical IDs defined in each node.

Although message retransmission based on the decision of
receiving nodes improve response time and reduce consumed
bandwidth, this decision is made based on ID that may be
received incorrectly. Therefore in MRMC-CAN, the arbitration
field of CAN messages (as shown in Figure 5), is divided into
two parts including reduced ID (RID) and ID-CRC. ID-CRC

allows the receiver nodes to make sure that the received ID is
correct.

Figure 5. MRMC-CAN Arbitration Field

As shown in Figure 6 MRMC-CAN includes Criticality
detection (CD), and Error Flag Transmission Control (EFTC)
modules, to give receiver nodes the ability of decision making
about the need for message retransmission. The CD module
monitors the CAN-RX signal of the standard CAN controller
and checks that the received ID matches with list of critical
IDs. If the message ID matches with the list of critical IDs, and
if received CRC-ID is equal to the calculated CRC-ID, the CD
module detects the criticality of receiving this message, and the
criticality signal goes high. The implementation of CD module
is shown in Figure 7.

Figure 6. Block Diagram of MRMC-CAN

Figure 7. Implementation of Criticality Detection Module

CAN Network
Real-timeness
Improvement

Techniques

Hardware-Based

Net Guardian

Topology
Changing

RedCAN

CANcentrate

ReCANcentrate

Hybrid
Redundancy

Based
DUCER

Software-Based

DR
Techniques

ADR

IADR

EDR

BFC

ECANDC

ICANDR

Minimizing
Stuffing-bit

WCTER
Based

Fifth International Conference on Internet of Things and Applications (IoT 2021)

Once the criticality of a message reception was detected by
the CD module, the receiver node must control propagation of
error flags. For this purpose, if reception of a received message
is critical, and an error detected, the receiver node must
propagate error flags, otherwise it must be prevented from error
flag propagation. Although, preventing error flag propagation
due to the incorrect reception of non-critical messages will be
reduce bandwidth consumption and increase the real-timeness
of CAN network, it causes Bit Error in the receiving node that
was prevented from error flag propagation. In CAN nodes, a
Bit Error is detected when the value of the monitored bit differs
from the transmitted bit. To resolve this issue, if a receiver
node, receives an erroneous non-critical message, in addition to
preventing it from error flag propagation, CAN-TX signal must
be routed to CAN-RX signal, until ongoing message
transmitted. In MRMC-CAN, EFTC module, controls error
flag propagation. As shown in Figure 8, EFTC module is
implemented with one flip-flop two multiplexer, one AND gate
and an OR gate.

Figure 8. Implementation of EFTC Module

As shown in Figure 9, disconnecting receiver node that
received an erroneous non-critical message, creates a silence
interval. During this interval, the disconnected node, must be
prevented from transmitting its messages. Therefore, the
standard CAN transmission procedure must be changed as
Figure 10.

Figure 9. Silence Interval

Figure 10. MRMC-CAN Message Transmission Flowchart

IV. RESPONSE TIME ANALYSIS

In the industrial context, response time has a direct impact
on the correctness of operations, therefore determining whether
or not a message can be transmitted on its deadline is
important, at design time. For this reason, in [10, 27], the first
timing analysis of the CAN networks called Tindell’s Analysis
presented. In Tindell’s Analysis the worst case response time
of messages is determined by parameters including jitter, worst
case queuing delay, and required transmission time. Since the
effect of error events was not considered in the Tindell’s
Analysis, it is modified by Davis and Burns [28], assuming that
the maximum number of errors on the bus at time interval t’ is
given by function F (t). Although in the analysis proposed by
Davis and Burns, the effect of errors on the worst case response
time is considered, but their analysis is not sufficient to
examine the worst case response time of the MRMC-CAN
method.

For this reason, in this paper, Tindell’s Analysis is modified
by considering the probability of erroneous message reception
in a node for which this reception is critical. In this analysis it
is assumed that the system is composed of periodic and
sporadic messages, which are enqueued at periodic or
minimum time intervals, and a message 𝑀𝑖 is characterized by
an 8-tuple: 〈𝑖𝑑𝑖 , 𝑚𝑖 , 𝐷𝑖 , 𝑇𝑖 , 𝐽𝑖 , 𝑃𝑒𝑖 , 𝑃𝑒𝑎𝑖 , 𝑃𝑒𝑐𝑛𝑖〉. Where in this
tuple 𝑖𝑑𝑖 is identifier, 𝑚𝑖 is the payload length, 𝐷𝑖 is deadline,
𝑇𝑖 is transmission period or minimum time interval, and 𝐽𝑖 is
jitter of periodic messages. In Tindell’s Analysis, the maximum
message transmission time 𝐶𝑖 is determined by considering the

Fifth International Conference on Internet of Things and Applications (IoT 2021)

stuffing bit with Equation 1, in which 𝜏𝑏𝑖𝑡 is the transmission
time of one bit.

 biti
i

i m
m

C

 847

5

834

Equation (1) gives the maximum message transmission
time if the probability of error occurrence during message
transmission 𝑃𝑒𝑖 is zero, otherwise the maximum transmission
time 𝐶𝑒𝑖

𝑚𝑎𝑥can be found iteratively through (2). Starting value

of this recurrence relation is 𝐶𝑒𝑖
(0)

= 𝐶𝑖 and iterates until

m=16, because a node enter to error-passive state after a
maximum of 16 times erroneous message transmission.

)232()1()()()1(n

ii

n

ii

n

i CePeCePeCe

Equation (2) specifies the maximum message transmission
time for Standard-CAN, however for MRMC-CAN, the
probability of error occurrence in the arbitration field 𝑃𝑒𝑎𝑖 ,
and the probability of erroneous message reception in a node
for which this reception is critical 𝑃𝑒𝑐𝑛𝑖 must be considered as
in (3).

)()()1()1(()1(n

iecnii

n

ii

n

e CePPeaPeCePeCe
i

)23()5523)(n

iiii CePecnPePecn

After obtaining the maximum transmission time, the
blocking time 𝐵𝑖 , which is caused by messages by higher
priority than 𝑀𝑖, is calculated through (4). Then the worst-case
queuing delay is obtained through iterative relation of (5). This

recurrence relation start with 𝑊𝑖
(0)

= 𝐵𝑖 and iterates

until 𝑊𝑖
(𝑚+1)

= 𝑊𝑖
(𝑚)

. The worst-case response time of

message 𝑀𝑖, is given by 𝑊𝑖
(𝑚)

.

)(max max

)(kihpki CB

max

)(

)(
)1(

k

ihpk k

bitk

n

i
i

n

i C
T

JW
BW

V. IMPLEMENTATION AND EVALUATION

In this section MRMC-CAN implemented and evaluated.
First, employed fault injector is introduced, then MRMC-CAN
is implemented as hardware-based on FPGA and software-
based on ARM Cortex M0. Then, to evaluate the real-timeness
improvement of proposed method, the response-time and
consumed bandwidth is analyzed, and to evaluate the overhead
of proposed method parameters including area overhead,
hardware utilization, and ROM and RAM usage are evaluated.

A. Prototype Implementation and Simulation

Since in the proposed method receiver nodes make decision
about message retransmission, evaluation must be done

through individually fault injection to each node. Therefore
fault injection performed based on Independent Fault Injector
(IFI) [29]. As shown in Figure 11, this fault injector is
implemented with one CAN Transceiver, fault injector
controller and a multiplexer for each node. Fault injector
controller receives fault injection command through RS232
interface.

Figure 11. Modified IFI Fault Injector Diagram

To simulate and verify the proposed method, the CAN
network implemented as shown in Figure 12 and Figure 13. In
this implementation, Node 1 has a software-based MRMC-
CAN implemented on ARM Cortex M0 (STM32F030), Node 2
has a hardware-based MRMC-CAN implemented on Xilinx
Spartan6 (6SLX9TQG144), and Node 3 has a standard CAN
Controller. In this Network IFI fault injector is implemented
with a 74HC153 and one Arm Cortex M0 as IFI Controller.

To simulate the implementation, a PC-based logic analyzer
is employed. In simulation fragment of Figure 14-a Node1
transmits a message with an identifier (ID’), which matches
with critical identifier list of Node 2. During this message
transmission, fault injected to Node 2, as a result MRMC-CAN
allows Node 2 to transmit error flag. In contrast, in Simulation
fragment of Figure 14-b, Node 1 transmits a message with
identifier (ID’’), which is none-critical for Node2, and during
this message transmission fault injected to Node 2. In this
situation Node 2 prevented from error flag propagation.

Figure 12. CAN Network Diagram

Fifth International Conference on Internet of Things and Applications (IoT 2021)

Figure 13. CAN Network Implementation

Figure 14. MRMC-CAN error transmission permission simulation

B. Response Time and Consumed Bandwidth

In this section, response time and consumed bandwidth of
MRMC-CAN evaluated in comparison with standard CAN and
WCTER-based approaches [13, 30]. In WCTER-based
methods, mixed criticality levels are considered for message
set, and the possibility of message retransmission in event of an
error is determined based on these levels. The benchmark
message set for this evaluation is generated by NetCarBench
[31]. However, since this tool does not support the criticality of
message reception, it should be modified to generate message
sets as Table I. After generating the benchmark message sets,
the test board is implemented as shown in Figure 16 and Figure
17. In this test board Electronic Control Units (ECU) and
software-based MRMC-CANs implemented on ARM Cortex
M3 and ARM Cortex M0 microcontrollers respectively.

The overall response time and consumed bandwidth
evaluation process is as follow. Firstly, each ECU employs its
internal timer to transmit its message based on the periods
defined in the message set benchmark. Secondly, IFI fault
injector controller inject faults to the nodes based on received
command from PC. Finally, response time is obtained by
recording the time it takes for messages to reach their
destinations, and consumed bandwidth is obtained based on
how long the bus is occupied per unit time. The results of
evaluation are presented in Figure 17 and Figure 18. As shown
in Figure 17 the MRMC-CAN method in comparison with
standard CAN and WCTER-based approaches improves
Consumed bandwidth by average 10.5% and 4.4%
respectively, and also as shown in Figure 18 proposed method

improves response time in comparison with standard CAN by
average 36.19%.

TABLE I. MESSAGE SET CREATED BY MODIFIED NETCARBENCH

Node 1

ID
D

p
a
ylo

a
d

P
erio

d

D
ea

d
lin

e

Must Receive By Node

1 2 3 4

241 8 20 10 □ ■ ■ □

738 8 2000 20 □ □ □ ■

248 8 20 5 □ □ ■ ■

Node 2

ID
D

p
a
ylo

a
d

P
erio

d

D
ea

d
lin

e

Must Receive By Node

1 2 3 4

787 8 1000 10 ■ □ □ □

306 4 50 25 ■ □ ■ □

455 8 100 30 □ □ □ ■

Node 3

ID
D

p
a
ylo

a
d

P
erio

d

D
ea

d
lin

e

Must Receive By Node

1 2 3 4

215 8 20 10 ■ □ □ ■

Node 4

ID
D

p
a
ylo

a
d

D
ea

d
lin

e

D
ea

d
lin

e

Must Receive By Node

1 2 3 4

523 8 100 5 □ ■ ■ □

Figure 15. Diagram of Test Board

Figure 16. Implementation of Test Board

Fifth International Conference on Internet of Things and Applications (IoT 2021)

Figure 17. Consumed Bandwidth

Figure 18. Response Time

C. Area OverHead and Utilization

The overall area overhead of hardware-based MRMC -
CAN modules is represented in Table II. In this table the
hardware size is given in term of two-input NAND gate count.
In addition to area overhead, Table III shows the device
utilization of hardware-based MRMC-CAN modules in Xilinx
Spartan 6. Moreover to show the software implementation
capability of the proposed method in microcontroller with
limited resources, the ROM, RAM usage of proposed method
is shown in Table IV.

TABLE II. AREA OVERHEAD OF MRMC-CAN MODULES

 Number of Gates Overheads (%)

Basic CAN Controller 20643 -

Active MRMC 111 0.5

TABLE III. HARDWARE BASED MRMC DEVICE UTILIZATION FOR

6SLX9TQG144

 Used Available Utilization

Global Buffers 1 16 6.25 %

Function Generators 111 5720 1.94 %

Dffs or Latches 79 11440 0.69 %

TABLE IV. SOFTWARE BASED MRMC ROM, RAM USAGE FOR

STM32F030F4PX

 Used Available Usage

RAM 29 4096 0.7 %

ROM 5024 16384 30.7 %

VI. CONCLUSION AND FUTURE WORKS

Although, CAN communication protocol, is employed in
industrial fields, due to its low-cost implementation, low
response time and noise robustness, temporal redundancy
feature of this protocol makes it vulnerable against timing-
failure. Since real-time capability is an essential requirement
for IIoT Communications, this paper presents MRMC-CAN
method in which message retransmission is performed based
on the criticality of message reception. Message retransmission
based on the criticality of message reception, improves the
real-timeness of CAN protocol by preventing message
retransmission in the event of receiving an incorrect message in
nodes that receiving of this message is not critical. The
MRMC-CAN method in comparison with standard CAN and
WCTER-based approaches reduces consumed bandwidth by
average 10.5% and 4.4% respectively and improves response
time in comparison with standard CAN by average 36.19%.

REFERENCES

[1] L. Zhang, F. Yang, and Y. Lei, “Tree-based intermittent connection fault
diagnosis for controller area network,” IEEE Trans. Veh. Technol., vol.
68, no. 9, pp. 9151–9161, Sep. 2019.

[2] H. Kimm and M. Jarrell, “Controller area network for fault tolerant
small satellite system design,” in 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE). IEEE, 2014, pp. 81–86.

[3] X. Jiang, M. Lora, and S. Chattopadhyay, "An Experimental Analysis of
Security Vulnerabilities in Industrial IoT Devices," ACM Transactions
on Internet Technology, 2020.

[4] J. Y. Guido Marchetto, Riccardo Sisto and A. Ksentini, “Formally
verified latency-aware vnf placement in industrial internet of things,” in
14th IEEE International Workshop on Factory Communication Systems
(WFCS), Imperia, Italy, 2018.

[5] S. Saadaoui, A. Khalil, M. Tabaa1, M. Chehaitly, F. Monteiro and A.
Dandache, “Improved many to one architecture based on discrete
wavelet packet transform for industrial IoT applications using channel
coding,” Springer, Journal of Ambient Intelligence and Humanized
Computing, vol. 11, no. 12, Dec. 2020.

[6] B. Chen and J. Wan, "Emerging trends of ml-based intelligent services
for industrial internet of things (iiot)", In Proc. 2019 IEEE Computing,
Communications and IoT Applications (ComComAp), 2019.

[7] H. Kong, J. Cheng, K. Narayanan and J. Hu, "DUCER: a Fast and
Lightweight Error Correction Scheme for In-Vehicle Network
Communication", 2018 IEEE International Conference on Vehicular
Electronics and Safety (ICVES), 2018.

[8] M. B. N. Shah, A. R. Husain, S. Punekkat, and R. Dobrin, “A new error
handling algorithm for controller area network in networked control
system,” Computer in Industry, vol. 64, no. 8, pp. 984–997, 2013.

[9] D. Kästner, J. Jersak, C. Ferdinand, P. Gliwa and R. Heckmann, "An
integrated timing analysis methodology for real-time systems", SAE
Technical Paper , pp. 0148-7191, 2011.

[10] K. W. Tindell, H. Hansson and A. J. Wellings, "Analysing real-time
communications: Controller area network (CAN)", Proc. 15th RealTime
Systems Symp., 1994.

[11] G. Buja, J. R. Pimentel and A. Zuccollo, "Overcoming babbling-idiot
failures in CAN networks: A simple and effective bus guardian solution

22

24

26

28

30

32

34

36

0 2 4 6 8 10 12 14 16 18 20

B
an

d
w

id
th

 C
o

n
su

m
p

ti
o

n
(%

)

Number of Injected Faults

CAN

WCTER-Based

MRMC-CAN

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5 6 7 8

R
es

p
o

n
se

 T
im

e
(u

s)

Number of Injected Faults

Standard CAN

MRMC_CAN

Fifth International Conference on Internet of Things and Applications (IoT 2021)

for the FlexCAN architecture", IEEE Trans. Ind. Informat., vol. 3, no. 3,
pp. 225-233, Aug. 2007.

[12] I. Broster and A. Burns, "An analysable bus-guardian for event-triggered
communication", Proc. 24th IEEE Real-Time Systems Symp.
(RTSS'03), pp. 410-419, 2003.

[13] A. Burns and R.I. Davis, "Mixed criticality on controller area network",
In Proc. Euromicro Conference on Real-Time Systems (ECRTS), pp.
125-134, 2013.

[14] H. Sivencrona et al., A Novel Distributed Add-on Concept to Detect and
Recover from Bus Failures in Controller Area Networks using
REDCAN, Proc. 8th International CAN Conference (ICC-08), Las
Vegas, Nevada, USA, March 2002.

[15] M. Barranco, J. Proenza, G. Rodriguez-Navas and L. Almeida, "An
active star topology for improving fault confinement in CAN networks",
IEEE Trans. Ind. Electron., vol. 2, no. 2, pp. 78-85, May 2006.

[16] M. Barranco, L. Almeida and J. Proenza, "ReCANcentrate: A Replicated
Star Topology for CAN Networks", Proc. 10th IEEE Int'l Conf.
Emerging Technologies and Factory Automation (ETFA 05), pp. 469-
476, 2005.

[17] A. Muhammad, D. Ayavoo and M. J. Pont, "A Novel Shared-Clock
Scheduling Protocol for Fault-Confinement in CAN-based Distributed
Systems", IEEE 5th International Conference on System of Systems
Engineering, 2015.

[18] Radovan Miucic, S. M. Mahmud, Zeljko Popovic, "An Enhanced Data-
Reduction Algorithm for Event-Triggered Networks," IEEE
Transactions on vehicular Technology, Vol. 58, No.6, pp. 2663-2678,
July, 2009.

[19] S. Misbahuddin, S. M. Mahmud and N. Al-Holou, "Development and
performance analysis of a data-reduction algorithm for automotive
multiplexing", IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 162-169,
Jan. 2001.

[20] P. R. Ramteke, S.M. Mahmud, "An Adaptive Data-Reduction Protocol
for the future In-Vehicle Networks," Soc. Automotive Eng., SAE Paper
2005-01-1540, 2005.

[21] R. Miucic and S. M. Mahmud. An improved adaptive data reduction
protocol for in-vehicle networks. In SAE, editor, In-Vehicle Software &
Hardware Systems, number 2006-01-1327 in Transactions Journal of

Passenger Cars: Electronic and Electrical Systems, pages pp. 650-658.
SAE, April 2006. SAE 2006 World Congress & Exhibition.

[22] Wu, Z. Piao, J. H. Kim and J. G. Chung, "CAN compression using
signal rearrangement", Circuits and Systems (APCCAS) 2014 IEEE
Asia Pacific

[23] Y. Wu and J. Chung, "Efficient controller area network data
compression for automobile applications", Frontiers of Info. Technol. &
Electro. Eng., vol. 16, no. 1, pp. 70-78, Jan. 2015.

[24] Y.-J. Wu and J.-G. Chung, "An improved controller area network data-
reduction algorithm for in-vehicle networks", IEICE Trans.
Fundamentals, vol. E100-A, no. 2, pp. 346-352, Feb 2017.

[25] Y.-J. Kim, Y Zou,Y.-E. Kim, and J.-G. Chung, " Multi-Level Data
Arrangement Algorithm for Can Data Compression", Springer,
International Journal of Automotive Technology, vol. 21, no. 6, pp.
1527-1537, 2020.

[26] K. Park, M. Kang, and D. Shin, "Mechanism for Minimizing Stuffing-bit
in CAN Messages," The 33rd Annual Conference of the IEEE Industrial
Electronics Society (IECON'07), pp. 735-737, Nov. 2007.

[27] K. Tindell and A. Burns, "Guaranteeing message latencies on Controler
Area Network", Proceedings of the 1st International CAN Conference,
pp. 1, 1994-September.

[28] R. I. Davis, A. Burns, R. J. Bril and J. J. Lukkien, "Controller area
network (can) schedulability analysis: Refuted revisited and revised",
Real-Time Syst., vol. 35, no. 3, pp. 239-272, 2007.

[29] G. Rodriguez-Navas, J. Jimenez and J. Proenza, "An architecture for
physical injection of complex fault scenarios in CAN networks", Proc.
IEEE Emerging Technol. Factory Autom., vol. 2, pp. 125-127, 2003.

[30] H. Aysan, A. Thekkilakattil, R. Dobrin and S. Punnekkat, "Efficient
Fault Tolerant Scheduling on Controller Area Network", Proceedings of
the 2010 IEEE Conference on Emerging Technologies and Factory
Automation, pp. 1-8, 2010.

[31] C. Braun, L. Havet, and N. Navet, "NETCARBENCH: a benchmark for
techniques and tools used in the design of automotive communication
systems", in 7th IFAC International Conference on Fieldbuses and
Networks in Industrial and Embedded Systems, 2007, pp. 321-328,
Available at http://www.netcarbench.org.

