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Abstract— Although the Industrial Internet of Things (IIoT) has 

made great improvement in factory automation, there are still 

many challenges in meeting response time and reliability 

requirements of IIoT communications.  These challenges are 

because of the need to real-time communications in an industrial 

environment with high electromagnetic interferences. To meet 

these challenges, in context of real-time industrial device 

communications, Controller Area Network (CAN) protocol is 

commonly employed, which is noise resistance, nevertheless the 

presence of a faulty node in CAN networks can lead to deadline 

violation of messages and timing failure. In this paper, to control 

the behavior of nodes, message retransmission performed based 

on criticality of message reception (MRMC-CAN). The proposed 

method in comparison with standard CAN and WCTER-based 

approaches reduces consumed bandwidth by average 10.5% and 

4.4%, respectively. Moreover, the proposed technique improves 

response time in comparison with standard CAN by average 

36.19%. 

Keywords: Controller Area Network (CAN), Industrial Internet 

of Things (IIoT), Real-Timeness, Reliability, Error Handling. 

I. INTRODUCTION  

The CAN communication protocol was designed in the 
1980s by Robert Bosch for vehicular internal network. This 
communication protocol is one of the mostly employed 
communication protocol in vehicular networks due to its low 
implementation cost and its fault tolerant behaviour against 
network errors [1]. Today this communication protocol is 
employed in other industrial fields and IIoT in addition to 
vehicular internal networks [2, 3]. 

IIoT systems are safety-critical in nature [4]. These systems 
require error handling and real-timeness in their 
communications [5, 6]. However, since in the CAN 
communication protocol, to deal with communication errors, 
corrupted message is retransmitted after any type of error 
detection, and given that this communication protocol employs 
the carrier sense multiple access with collision detection 
(CSMA/CD), retransmission of messages is in conflict with 
real-time constraint required in the safety-critical systems [7].  

There are five different type of errors in the CAN 
communication protocol, including Bit Error, Stuff Error, 
Cyclic Redundancy Check (CRC) Error, Form Error, and 
Acknowledgment Error. Among these errors, CRC Error is 

detected by receiver nodes if there is any differences between 
received and computed CRC, and the Acknowledgment Error 
is detected by the sender node if this node does not receive any 
acknowledgement from the receiver nodes. 

In the CAN communication protocol, the correctness of 
message reception is determined by the content of ACK field. 
As shown in Figure 1, ACK field consist of ACK slot and 
ACK diameter. Sender node leaves the ACK slot recessive and 
waits for acknowledgment. The correct reception of messages 
will have acknowledged after CRC checking, through changing 
the ACK slot to dominant by each receiver node. If ACK slot 
does not changed to dominant, it means that an incorrect 
message detected by all receiver nodes. In this case, the sender 
node, detects acknowledgment error, and retransmit 
unacknowledged frame. 

 

Figure 1.  CAN ACK field format 

Although the acknowledgement process employed in the 
CAN communication protocol assures the sender that the 
message has been received correctly by all nodes, the dominant 
bit sent in the ACK slot by one of the receiver node which 
detects the correctness of received message, prevents the 
sender node from identifying the nodes that received the 
message incorrectly. In such a situation, as shown in Figure 2, 
the sender’s ignorance of which nodes received the message 
incorrectly, prevents the sender node from making the right 
decision about the need to retransmit unacknowledged frame. 

 

Figure 2.  Acknowledgement Process 
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Any node which detects CRC Error will issue an error flag 
to notify the sender node about incorrect reception of the 
message. As shown in Figure 3, although sending an error 
frame notifies the sender node about incorrect reception, 
recovery time from detecting an error until the start of the next 
message is 18 bit times and can be at most 31 bit times [8]. 
Therefore, to improve the real-timeness of CAN network, in 
this paper, the MRMC-CAN technique is presented. This 
technique gives the sender node the knowledge of which nodes 
did not receive the message correctly. This knowledge allows 
the sender node to decide whether retransmit the message or 
not. 

 

Figure 3.  Bit sequence after CRC Error detection 

The rest of this paper is organized as follows. The related 
studies are investigated in Section II, then proposed technique 
is illustrated in Section III. The response time presented in 
Section IV. Section V describes the experimental results and 
evaluation. Finally, conclusion are presented in Section VI. 

II. RELATED STUDIES 

Since non-violation of message deadlines and timing 
verification is the key to ensuring vehicle safety during the 
design phase [9], papers [10, 28] focus on the CAN worst case 
response-time improvement through consumed bandwidth 
reduction. CAN worst case response-time defined as the 
longest time taken for messages to reach their destinations, 
which measured relative to the arrival time of messages [10].  

One way to reduce bandwidth consumption is to prevent 
offending node from connecting to the CAN network.  
Network Guardian (NG) is commonly employed to prevent 
babbling idiot failure which is caused by offending nodes [11], 
[12]. Although employing of NG prevents the high bandwidth 
overhead caused by faulty nodes, the level of babbling that NG 
prevents the node from sending a message to the network is the 
same for all messages. For this reason, an analysis for the 
Guardian based approach is presented in [13]. In this analysis, 
the number of retransmission of a messages is determined 
based on the criticality level of the messages.  

In addition to methods which prevents high traffic 
consumption due to faulty nodes, others [14,17] prevents fault 
propagation from one subnet to the others by changing linear 
topology of the CAN network. In [14] by changing the 
topology of the CAN network, the RedCAN is presented. In 
RedCAN, after detecting physical defects in one sector to 
prevent fault propagation, other nodes disconnect this sector 
and employ redundant sector. Also Barranco and Proenza [15] 

propose active star topology, called CANcentrate. In 
CANcentrate central hub, prevents fault propagation. Although 
CANcentrate prevents communication network failure due to 
link faults, the active star topology hub, represents single point 
of failure. As a result they present replicated active star 
topology called ReCANcentrate which is based on the 
hardware redundancy of the hub [16]. Moreover, in [17] a 
shared clock algorithm named TTC-SC6 proposed which 
ensures that fault on one link of star network cannot propagate 
to the rest of the network via port disablement. 

In contrast, a series of papers [18, 25], reduce bandwidth 
consumption through data reduction (DR) techniques. In DR 
techniques, the compression process is as follow, first a 
message with the identifier ID’ is sent at t=t’, then the 
subsequent messages with ID’ sent at t=t’+1 based on signals’ 
differences [18]. In DR technique presented in [19], the first 
byte of compressed data frame is assigned to data compression 
code (DCC). Each bit of DCC indicates whether or not one 
byte of data frame compressed. In [20] Adaptive DR (ADR) 
technique is presented. In ADR DCC is based on signals 
instead of bytes. In addition ADR prevents the current frame 
from being transmitted if it does not differ from previous one.  

Although, ADR reduces the bandwidth consumption, in this 
technique, if the value of one of the signal differences exceeds 
the assigned data field, the whole message will be sent 
uncompressed. Therefore, in [21], the improved ADR (IADR) 
technique is presented. In this method, it is possible to send a 
combination of compressed and uncompressed signals in one 
message. Moreover, [18] proposes Enhanced DR (EDR) 
technique, considering the overhead caused by DR techniques 
and its effect on the bit length of the compressed message. In 
EDR, a signal is sent compressed if it does not increase the 
length of the compressed message compared to the 
uncompressed message. 

Assign Data field to signals based on the predicted 
maximum bit length of signal differences (e.g., in boundary of 
fifteen compression technique (BFC) [22], a signal is 
compressed if its corresponding signal difference is within the 
maximum compression rage of ±15 bits.) affect the 
performance of DR techniques [21, 23]. Therefore, Wu and 
Chung proposed efficient CAN DR (ECANDC) [23], and 
improved CAN DR (ICANDR) [24] techniques based on signal 
rearrangement algorithms (SRA). In these techniques, 
compression area selection (MAP) is employed to eliminate the 
prediction of the maximum signal differences bit length. In 
ICANDR technique, CAN data field, divided into 24, 24, and 
16 bit length sub fields. Each combination of signal mapping to 
these subfields results in different compression efficiency. In 
[25] a CAN data arrangement algorithm proposed to maximize 
compression efficiency. 

In addition to DR techniques, others reduce bandwidth 
consumption through minimizing stuffing-bit. In CAN network 
non return to zero (NRZ) coding employed to ensure 
synchronization of all nodes. In this coding, an opposite 
polarity bit is inserted after five consecutive bits with the same 
polarity. Although, bit stuffing is a fault tolerant mechanism in 
CAN which synchronize all nodes, Stuffing-bits can cause a 
22% overhead in worst case [26]. For this reason Park and 
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Kang propose a bit stuffing mechanism based on XOR 
masking to minimize stuffing-bits and prevent priority 
inversion [26]. In their mechanism, messages are divided into 
m groups, which each of them contain n identifiers. In this 
mechanism first XOR mask initialized to “1010…”, then 1 
assigned to 1 + [𝑙𝑜𝑔2𝑚] most significant bits and 0 is assigned 
to [𝑙𝑜𝑔2𝑚] bits of XOR mask to prevent priority inversion. 

Another category of real-timeness improvement and 
consumed bandwidth reduction techniques is based on error 
correction and prevention of message retransmission. In [7], 
dual CRC error correction (DUCER) technique proposed, 
which employs redundant communication channel and 
lightweight error correction software scheme, which can 
correct 5-bit errors. Classification of real-timeness 
improvement techniques shows in Figure 4. 

 
Figure 4.  Classification of Methods for Real-Timeness Improvement of 

CAN Network 

III. PROPOSED METHOD 

As mentioned earlier, corrupted messages are retransmitted 
in the CAN communication protocol to deal with 
communication errors, whereas, message retransmission is in 
conflict with the real-time requirements of safety-critical 
systems. For this reason, in this paper the MRMC-CAN is 
presented, In MRMC-CAN decision to retransmission is made 
at the receiver nodes. For this purpose, receiver nodes control 
the message retransmission by controlling error flag 
propagation based on the criticality of receiving a message. 
The criticality of receiving a message is determined based on a 
list of critical IDs defined in each node. 

Although message retransmission based on the decision of 
receiving nodes improve response time and reduce consumed 
bandwidth, this decision is made based on ID that may be 
received incorrectly. Therefore in MRMC-CAN, the arbitration 
field of CAN messages (as shown in Figure 5), is divided into 
two parts including reduced ID (RID) and ID-CRC. ID-CRC 

allows the receiver nodes to make sure that the received ID is 
correct. 

 

Figure 5.  MRMC-CAN Arbitration Field 

As shown in Figure 6 MRMC-CAN includes Criticality 
detection (CD), and Error Flag Transmission Control (EFTC) 
modules, to give receiver nodes the ability of decision making 
about the need for message retransmission. The CD module 
monitors the CAN-RX signal of the standard CAN controller 
and checks that the received ID matches with list of critical 
IDs. If the message ID matches with the list of critical IDs, and 
if received CRC-ID is equal to the calculated CRC-ID, the CD 
module detects the criticality of receiving this message, and the 
criticality signal goes high. The implementation of CD module 
is shown in Figure 7. 

 
Figure 6.  Block Diagram of MRMC-CAN 

 
Figure 7.  Implementation of Criticality Detection Module 
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Once the criticality of a message reception was detected by 
the CD module, the receiver node must control propagation of 
error flags. For this purpose, if reception of a received message 
is critical, and an error detected, the receiver node must 
propagate error flags, otherwise it must be prevented from error 
flag propagation. Although, preventing error flag propagation 
due to the incorrect reception of non-critical messages will be 
reduce bandwidth consumption and increase the real-timeness 
of CAN network, it causes Bit Error in the receiving node that 
was prevented from error flag propagation. In CAN nodes, a 
Bit Error is detected when the value of the monitored bit differs 
from the transmitted bit. To resolve this issue, if a receiver 
node, receives an erroneous non-critical message, in addition to 
preventing it from error flag propagation, CAN-TX signal must 
be routed to CAN-RX signal, until ongoing message 
transmitted. In MRMC-CAN, EFTC module, controls error 
flag propagation. As shown in Figure 8, EFTC module is 
implemented with one flip-flop two multiplexer, one AND gate 
and an OR gate. 

 

Figure 8.  Implementation of EFTC Module 

As shown in Figure 9, disconnecting receiver node that 
received an erroneous non-critical message, creates a silence 
interval. During this interval, the disconnected node, must be 
prevented from transmitting its messages. Therefore, the 
standard CAN transmission procedure must be changed as 
Figure 10. 

 
Figure 9.  Silence Interval 

 

Figure 10.  MRMC-CAN Message Transmission Flowchart 

IV. RESPONSE TIME ANALYSIS 

In the industrial context, response time has a direct impact 
on the correctness of operations, therefore determining whether 
or not a message can be transmitted on its deadline is 
important, at design time. For this reason, in [10, 27], the first 
timing analysis of the CAN networks called Tindell’s Analysis 
presented. In Tindell’s Analysis the worst case response time 
of messages is determined by parameters including jitter, worst 
case queuing delay, and required transmission time. Since the 
effect of error events was not considered in the Tindell’s 
Analysis, it is modified by Davis and Burns [28], assuming that 
the maximum number of errors on the bus at time interval t’ is 
given by function F (t). Although in the analysis proposed by 
Davis and Burns, the effect of errors on the worst case response 
time is considered, but their analysis is not sufficient to 
examine the worst case response time of the MRMC-CAN 
method.  

For this reason, in this paper, Tindell’s Analysis is modified 
by considering the probability of erroneous message reception 
in a node for which this reception is critical. In this analysis it 
is assumed that the system is composed of periodic and 
sporadic messages, which are enqueued at periodic or 
minimum time intervals, and a message 𝑀𝑖 is characterized by 
an 8-tuple: 〈𝑖𝑑𝑖 , 𝑚𝑖 , 𝐷𝑖 , 𝑇𝑖 , 𝐽𝑖 , 𝑃𝑒𝑖 , 𝑃𝑒𝑎𝑖 , 𝑃𝑒𝑐𝑛𝑖〉.  Where in this 
tuple 𝑖𝑑𝑖  is identifier, 𝑚𝑖 is the payload length, 𝐷𝑖  is deadline, 
𝑇𝑖  is transmission period or minimum time interval, and 𝐽𝑖  is 
jitter of periodic messages. In Tindell’s Analysis, the maximum 
message transmission time 𝐶𝑖 is determined by considering the 
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stuffing bit with Equation 1, in which 𝜏𝑏𝑖𝑡 is the transmission 
time of one bit. 
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Equation (1) gives the maximum message transmission 
time if the probability of error occurrence during message 
transmission 𝑃𝑒𝑖 is zero, otherwise the maximum transmission 
time 𝐶𝑒𝑖

𝑚𝑎𝑥can be found iteratively through (2). Starting value 

of this recurrence relation is 𝐶𝑒𝑖
(0)

= 𝐶𝑖  and iterates until 

m=16, because a node enter to error-passive state after a 
maximum of 16 times erroneous message transmission. 
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Equation (2) specifies the maximum message transmission 
time for Standard-CAN, however for MRMC-CAN, the 
probability of error occurrence in the arbitration field 𝑃𝑒𝑎𝑖  , 
and the probability of erroneous message reception in a node 
for which this reception is critical 𝑃𝑒𝑐𝑛𝑖 must be considered as 
in (3). 
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After obtaining the maximum transmission time, the 
blocking time  𝐵𝑖 , which is caused by messages by higher 
priority than 𝑀𝑖, is calculated through (4). Then the worst-case 
queuing delay is obtained through iterative relation of (5). This 

recurrence relation start with 𝑊𝑖
(0)

= 𝐵𝑖  and iterates 

until  𝑊𝑖
(𝑚+1)

= 𝑊𝑖
(𝑚)

. The worst-case response time of 

message 𝑀𝑖, is given by 𝑊𝑖
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V. IMPLEMENTATION AND EVALUATION 

In this section MRMC-CAN implemented and evaluated. 
First, employed fault injector is introduced, then MRMC-CAN 
is implemented as hardware-based on FPGA and software-
based on ARM Cortex M0. Then, to evaluate the real-timeness 
improvement of proposed method, the response-time and 
consumed bandwidth is analyzed, and to evaluate the overhead 
of proposed method parameters including area overhead, 
hardware utilization, and ROM and RAM usage are evaluated. 

A. Prototype Implementation and Simulation 

Since in the proposed method receiver nodes make decision 
about message retransmission, evaluation must be done 

through individually fault injection to each node. Therefore 
fault injection performed based on Independent Fault Injector 
(IFI) [29]. As shown in Figure 11, this fault injector is 
implemented with one CAN Transceiver, fault injector 
controller and a multiplexer for each node. Fault injector 
controller receives fault injection command through RS232 
interface. 

 

Figure 11.  Modified IFI Fault Injector Diagram 

To simulate and verify the proposed method, the CAN 
network implemented as shown in Figure 12 and Figure 13.  In 
this implementation, Node 1 has a software-based MRMC-
CAN implemented on ARM Cortex M0 (STM32F030), Node 2 
has a hardware-based MRMC-CAN implemented on Xilinx 
Spartan6 (6SLX9TQG144), and Node 3 has a standard CAN 
Controller. In this Network IFI fault injector is implemented 
with a 74HC153 and one Arm Cortex M0 as IFI Controller. 

To simulate the implementation, a PC-based logic analyzer 
is employed. In simulation fragment of Figure 14-a Node1 
transmits a message with an identifier (ID’), which matches 
with critical identifier list of Node 2. During this message 
transmission, fault injected to Node 2, as a result MRMC-CAN 
allows Node 2 to transmit error flag. In contrast, in Simulation 
fragment of Figure 14-b, Node 1 transmits a message with 
identifier (ID’’), which is none-critical for Node2, and during 
this message transmission fault injected to Node 2. In this 
situation Node 2 prevented from error flag propagation.  

 

 

Figure 12.  CAN Network Diagram 
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Figure 13.  CAN Network Implementation 

 
Figure 14.  MRMC-CAN error transmission permission simulation 

B. Response Time and Consumed Bandwidth 

In this section, response time and consumed bandwidth of 
MRMC-CAN evaluated in comparison with standard CAN and 
WCTER-based approaches [13, 30]. In WCTER-based 
methods, mixed criticality levels are considered for message 
set, and the possibility of message retransmission in event of an 
error is determined based on these levels. The benchmark 
message set for this evaluation is generated by NetCarBench 
[31]. However, since this tool does not support the criticality of 
message reception, it should be modified   to generate message 
sets as Table I. After generating the benchmark message sets, 
the test board is implemented as shown in Figure 16 and Figure 
17. In this test board Electronic Control Units (ECU) and 
software-based MRMC-CANs implemented on ARM Cortex 
M3 and ARM Cortex M0 microcontrollers respectively. 

The overall response time and consumed bandwidth 
evaluation process is as follow. Firstly, each ECU employs its 
internal timer to transmit its message based on the periods 
defined in the message set benchmark. Secondly, IFI fault 
injector controller inject faults to the nodes based on received 
command from PC. Finally, response time is obtained by 
recording the time it takes for messages to reach their 
destinations, and consumed bandwidth is obtained based on 
how long the bus is occupied per unit time. The results of 
evaluation are presented in Figure 17 and Figure 18. As shown 
in Figure 17 the MRMC-CAN method in comparison with 
standard CAN and WCTER-based approaches improves 
Consumed bandwidth by average 10.5% and 4.4% 
respectively, and also as shown in Figure 18 proposed method 

improves response time in comparison with standard CAN by 
average 36.19%. 

TABLE I.  MESSAGE SET CREATED BY MODIFIED NETCARBENCH 

Node 1 
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Must Receive By Node 

1 2 3 4 

241 8 20 10 □ ■ ■ □ 

738 8 2000 20 □ □ □ ■ 

248 8 20 5 □ □ ■ ■ 

Node 2 
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Must Receive By Node 

1 2 3 4 

787 8 1000 10 ■ □ □ □ 

306 4 50 25 ■ □ ■ □ 

455 8 100 30 □ □ □ ■ 
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Must Receive By Node 

1 2 3 4 

523 8 100 5 □ ■ ■ □ 

 

 

Figure 15.  Diagram of Test Board 

 

Figure 16.  Implementation of Test Board 
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Figure 17.  Consumed Bandwidth 

 

Figure 18.  Response Time 

C. Area OverHead and Utilization 

The overall area overhead of hardware-based MRMC -
CAN modules is represented in Table II. In this table the 
hardware size is given in term of two-input NAND gate count. 
In addition to area overhead, Table III shows the device 
utilization of hardware-based MRMC-CAN modules in Xilinx 
Spartan 6. Moreover to show the software implementation 
capability of the proposed method in microcontroller with 
limited resources, the ROM, RAM usage of proposed method 
is shown in Table IV. 

TABLE II.  AREA OVERHEAD OF MRMC-CAN MODULES 

 Number of Gates Overheads (%) 

Basic CAN Controller 20643 - 

Active MRMC 111 0.5 

TABLE III.  HARDWARE BASED MRMC DEVICE UTILIZATION FOR 

6SLX9TQG144 

 Used Available Utilization 

Global Buffers 1 16 6.25 % 

Function Generators 111 5720 1.94 % 

Dffs or Latches 79 11440 0.69 % 

TABLE IV.  SOFTWARE BASED MRMC ROM, RAM USAGE FOR 

STM32F030F4PX 

 Used Available Usage 

RAM 29 4096 0.7 % 

ROM 5024 16384 30.7 % 

 

VI. CONCLUSION AND FUTURE WORKS  

Although, CAN communication protocol, is employed in 
industrial fields, due to its low-cost implementation, low 
response time and noise robustness, temporal redundancy 
feature of this protocol makes it vulnerable against timing-
failure. Since real-time capability is an essential requirement 
for IIoT Communications, this paper presents MRMC-CAN 
method in which message retransmission is performed based 
on the criticality of message reception. Message retransmission 
based on the criticality of message reception, improves the 
real-timeness of CAN protocol by preventing message 
retransmission in the event of receiving an incorrect message in 
nodes that receiving of this message is not critical. The 
MRMC-CAN method in comparison with standard CAN and 
WCTER-based approaches reduces consumed bandwidth by 
average 10.5% and 4.4% respectively and improves response 
time in comparison with standard CAN by average 36.19%. 
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