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Abstract. In this paper, after introducing continuous, injective
and sequentially convergent mapping on a group, a generalization
of Kannan and Chatterjea’s fixed point theorems on Banach groups
is presented.

1. Introduction

Let J be a group and ϑ : J → J be a mapping. An element w ∈ J
is called a fixed point of ϑ if ϑ(w) = w. Let w0 ∈ J be an arbitrary
element. Define the Picard iterative sequence {wn} in J as follows

wn+1 = ϑ(wn), (n = 0, 1, 2... ).

We note that the convergence of this sequence plays a significant role
in the existence of a fixed point for mapping ϑ. Define the nth iterate
of ϑ as ϑ0 = I ( the identity map) and ϑn = ϑn−1oϑ, for n ≥ 1.

The fixed point theory is one of the most useful and essential tools
of nonlinear analysis and its applications. The origin of fixed point
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theory known as the Banach contraction principle. Banach contraction
principle states that any contraction on a complete metric space has a
unique fixed point [1]. In 1968 Kannan [6] proved that a self-mapping
υ on a complete metric space (T , d) satisfying

d(t, s) ≤ η(d(t, υ(t)) + d(s, υ(s)),

for all t, s ∈ T where 0 < η < 1
2

has a unique fixed point. A similar
conclusion was also obtained by Chaterjee in 1972 [5]. Koparde and
Wghmode [7] proved a fixed point theorem for a self-mapping υ on a
complete metric space (T , d) satisfying the Kannan type condition

d2(υ(t), υ(s)) ≤ η(d2(t, υ(t)) + d2(s, υ(s)),

for all t, s ∈ T where 0 < η < 1
2
.

Group-norms have played a role in topological groups [2]. The
Birkhoff-Kakutanis metrization theorem for groups states that each
first-countable Hausdorfgroup has a right invariant metric [3]. The
term group-norm probably first appeared in Pettiss paper in 1950 [8].
In our further considerations, by applying sequentially convergent map-
pings, we will generalize this results in Banach groups.

Definition 1.1. [2] Let J be a group. A norm on a group J is a
function ‖.‖ : J → R with the following properties:

(1) ‖w‖ ≥ 0, for all w ∈ J ;
(2) ‖w‖ = ‖w−1‖, for all w ∈ J ;
(3) ‖wq‖ ≤ ‖w‖+ ‖q‖, for all w, q ∈ J ;
(4) ‖w‖ = 0 implies that w = e.

A normed group (J , ‖.‖) is a group J equipped with a norm ‖.‖. By
setting d(w, q) := ‖w−1q‖, it is easy to see that norms are in bijection
with left-invariant metrics on J .

Definition 1.2. [2] A Banach group is a normed group (J , ‖.‖), which
is complete with respect to the metric

d(w, q) = ‖wq−1‖, (w, q ∈ J ).

Definition 1.3. [4] Let (T , d) be a metric space. We call a mapping
υ : T → T is sequentially convergent if for each sequence {tn} that
{υ(tn)} is convergent then {tn} is also convergent.

2. Main results

Theorem 2.1. Let (J , ‖.‖) be a Banach group. Suppose that ϑ : J →
J be a map and τ : J → J be a continuous, injection and sequentially
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convergent mapping. If η > 0, µ ≥ 0, 2η + µ < 1 and

‖τϑ(w)(τϑ(q))−1‖ ≤ η[‖τ(w)(τϑ(w))−1‖+ ‖τ(q)(τϑ(q))−1‖] (2.1)

+ µ‖τ(w)τ(q)−1‖ (2.2)

for all w, q ∈ J , then ϑ has a unique fixed point l. Moreover, for any
w0 ∈ J the sequence {ϑn(w0)} converges to the l.

Proof. Suppose that w0 ∈ J is given and the sequence {wn} be defined
as the following wn+1 = ϑ(wn) for n = 0, 1, 2, ... . By taking w = wn
and q = wn−1 in (2.1) we get

‖τ(wn+1)τ(wn)−1‖ ≤ η[‖τ(wn+1)τ(wn)−1‖+ ‖τ(wn)τ(wn−1)
−1‖]

+ µ‖τ(wn)τ(wn−1)
−1‖,

then

‖τ(wn+1)τ(wn)−1‖ ≤ α‖τ(wn)τ(wn−1)
−1‖, (2.3)

for each n = 0, 1, 2, ... , and 0 < α = η+µ
1−η < 1. By the inequality (2.3)

we have

‖τ(wn)τ(wm)−1‖ ≤ αm

1− α
‖τ(w1)τ(w0)

−1‖,

for all n,m ∈ N and n > m. Since 0 < α < 1 we conclude that
the sequence {τ(wn)} is Cauchy sequence. Completeness of J ensures
that there exists z ∈ J such that lim

n→∞
τ(wn) = z. It implies that the

sequence {wn} is also a convergent sequence, i.e. there exists l ∈ J
such that lim

n→∞
wn = l.

Since the mapping τ is continuous then lim
n→∞

τ(wn) = τ(l). Therefore,

we have

‖τϑ(l)τ(l)−1‖ ≤ η‖τ(l)(τϑ(l))−1‖+ ηαn−1‖τ(w1)τ(w0)
−1‖

+ µ‖τ(l)τ(wn−1)
−1‖+ αn‖τ(w1)τ(w0)

−1‖
+ ‖τ(wn+1)τ(l)−1‖.

Letting n → ∞ in the inequality above, since 0 < α < 1 and τ is
continuous we conclude that ‖τϑ(l)τ(l)−1‖ ≤ η‖τϑ(l)τ(l)−1‖. As 0 <
η < 1, then τϑ(l) = τ(l). But ϑ(l) = l since τ is an injection. For the
uniqueness, we suppose that ϑ has two distinct fixed points l, l0 ∈ J .
Then from (2.1) we have

‖τ(l)τ(l0)
−1‖ = ‖τϑ(l)τϑ(l0)

−1‖
≤ η[‖τ(l)τϑ(l)‖+ ‖τ(l0)τϑ(l0)

−1‖] + µ‖τ(l)τ(l0)
−1‖

= µ‖τ(l)τ(l0)
−1‖.
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Since 0 < µ < 1, the last inequality implies that ‖τ(l)τ(l0)
−1‖ =

0. As τ is an injection we have l = l0. It follows immediately that
lim
n→∞

ϑn(w0) = l for any w0 ∈ J . �

Similarly, the following theorem could be solved

Theorem 2.2. Let (J , ‖.‖) be a Banach group, ϑ : J → J be a map
and τ : J → J be continuous, injection and sequentially convergent
mapping. If η > 0, µ ≥ 0, 2η + µ < 1 and

‖τϑ(w)(τϑ(q))−1‖ ≤ η[‖τ(w)(τϑ(q))−1‖+ ‖τ(q)(τϑ(w))−1‖] (2.4)

+ µ‖ϑ(w)τ(q)−1‖, (2.5)

for all w, q ∈ J , then ϑ has a unique fixed point l. Moreover, for any
w0 ∈ J the sequence {ϑn(w0)} converges to the l.

Theorem 2.3. Let (J , ‖.‖) be a Banach group, ϑ : J → J and
τ : J → J be a mapping such that it is continuous, injection and
sequentially convergent. If η > 0, µ ≥ 0, 2η + µ < 1 and

‖τϑ(w)(τϑ(q))−1‖2 ≤ η[‖τ(w)(τϑ(w))−1‖2 + ‖τ(q)(τϑ(q))−1‖2] (2.6)

+ µ‖τ(w)τ(q)−1‖2 (2.7)

for all w, q ∈ J , then ϑ has a unique fixed point l. Moreover, for any
w0 ∈ J the sequence {ϑn(w0)} converges to the l.

Proof. Suppose that w0 ∈ J is given and the sequence {wn} be defined
as the following wn+1 = ϑ(wn) for n = 0, 1, 2, ... . By (2.6), we have

‖τ(wn+1)τ(wn)−1‖2 ≤ η[‖τ(wn+1)τ(wn)−1‖2 + ‖τ(wn)τ(wn−1)
−1‖2]

+ µ‖τ(wn)τ(wn−1)
−1‖2.

Therefore,

‖τ(wn+1)τ(wn)−1‖2 ≤ α‖τ(wn)τ(wn−1)
−1‖2, (2.8)

for each n = 0, 1, 2, ... , and 0 < α = (η+µ
1−η )

1
2 < 1. By the inequality

(2.8) we have

‖τ(wn)τ(wm)−1‖2 ≤ αm

1− α
‖τ(w1)τ(w0)

−1‖2,

for all n,m ∈ N where n > m. Since 0 < α < 1 we conclude that the
sequence {τ(wn)} is a Cauchy sequence and there exists z ∈ J such
that lim

n→∞
τ(wn) = z.

As τ : J → J is sequentially convergent mapping and since the se-
quence {τ(wn)} is convergent, it implies that the sequence {wn} is also
convergent, i.e. there exists l ∈ J so that lim

n→∞
wn = l.
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Since the mapping τ is continuous we see that lim
n→∞

τ(wn) = τ(l). Now,

we show that l is the unique fixed point of ρ. By (2.6), we have

‖τϑ(l)τ(l)−1‖ ≤ ‖τ(l)τ(wn+1)
−1‖+ ‖τ(wn+1)(τϑ(l))−1‖

= ‖τ(l)τ(wn+1)
−1‖+ ‖τϑ(wn)(τϑ(l))−1‖

≤ ‖τ(l)τ(wn+1)
−1‖+ [η[‖τ(wn)(τϑ(wn))−1‖2

+ ‖τ(l)(τϑ(l))−1‖2] + µ‖τ(wn)τ(l)−1‖2]
1
2

= ‖τ(l)τ(wn+1)
−1‖+ [η[‖τ(wn)(τ(wn+1))

−1‖2

+ ‖τ(l)(τϑ(l))−1‖2] + µ‖τ(wn)τ(l)−1‖2]
1
2 ,

for each n ∈ N. For n → ∞, the latter is transformed as the fol-
lowing ‖τϑ(l)τ(l)−1‖ ≤ η

1
2‖τϑ(l)τ(l)−1‖. But, η < 1. Therefore,

‖τϑ(l)τ(l)−1‖ = 0. To see the uniqueness of the fixed point of ϑ,
let l, l0 ∈ J be two fixed points on ϑ. Using (2.6), we have

‖τ(l)τ(l0)
−1‖2 = ‖τϑ(l)(τϑ(l0))

−1‖2

≤ η[‖τ(l)(τϑ(l))−1‖2 + ‖τ(l0)(τϑ(l0))
−1‖2]

+ µ‖τ(l)τ(l0)
−1‖2

= η[‖τ(l)τ(l)−1‖2 + ‖τ(l0)τ(l0)
−1‖2] + µ‖τ(l)τ(l0)

−1‖2

= µ‖τ(l)τ(l0)
−1‖2,

and since 0 < µ < 1 the latter inequality implies that ‖τ(l)τ(l0)
−1‖ = 0.

But, τ is an injection, and thus l = l0. Finally, for each w0 ∈ J the
sequence {ϑn(w0)} converges to the unique fixed point on ϑ. �
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