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Abstract. In this paper, two fixed point theorems for generalized
contractions with constants in a complete metric space is presented.

1. Introduction

One of the most popular tools for solving problems in nonlinear anal-
ysis and its applications is the Banach fixed point theorem [1]. In 1968
Kannan [7] and in 1972 Chatterjea [4] studied contractive mappings
which give a unique fixed point on a complete metric space. In this
paper we use Picard iteration given as following:
Let (T , d) be a metric space and θ : T → T be a mapping. For any
t0 ∈ T , the sequence {tn} ⊂ T given by

tn = θ(tn−1) = θn(t0) n = 0, 1, 2, ...
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is called the sequence of successive approximations with the initial value
t0 [2].

Let (T , d) be a metric space. A mapping θ : T → T , is said to be
a contraction if there exists η ∈ [0, 1) such that for all t, s ∈ T

d(θ(t), θ(s)) ≤ ηd(t, s). (1.1)

If the metric space (T , d) is complete then the mapping satisfying (1.1)
has a unique fixed point [1]. Also, Kannan [7] established the following
result:
If a mapping θ : T → T where (T , d) is a complete metric space,
satisfies the inequality

d(θ(t), θ(s)) ≤ η[d(t, θ(t)) + d(s, θ(s))], (1.2)

where η ∈ [0, 1
2
) and t, s ∈ T . Then, θ has a unique fixed point.

The mappings satisfying (1.2) are called Kannan type mappings. The
significance of Kannan’s theorem appeared in Subrahmanyam paper
[8]. He showed that a metric space is complete if and only if every
Kannan mapping has a fixed point. Banach contractions do not have
this property; Connell in [5] has given an example of metric space T
that is not complete but every Banach contraction on T has a fixed
point.
In 2011 Moradi and Alimohammadi [6] introduced new extensions of
Kannan fixed point theorem on generalized metric spaces as following:

Theorem 1.1. Let (T , d) be a complete generalized metric space and
θ, ϑ : T → T be mappings such that θ is continuous, one-to-one and
sequentially convergent. If 0 ≤ η < 1

2
and

d(θϑ(t)), θϑ(s) ≤ η[d(θ(t), θϑ(t)) + d(θ(s), θϑ(s))],

for all t, s ∈ T , then ϑ has a unique fixed point.

2. Main results

In this section, by applying sequentially convergent mappings, we
generalize contractions with constants in a complete metric space and
prove two main theorems which are generalization of very recent results.

Definition 2.1. [3] Let (T , d) be a metric space. We call a mapping
υ : T → T is sequentially convergent if for each sequence {tn} that
{υ(tn)} is convergent then {tn} is also convergent.

Let Ψ be the class of all nondecreasing continuous functions σ :
[0,+∞)→ [0,+∞) such that σ(t) = 0 if and only if t = 0.

Definition 2.2. A function σ : [0,∞)→ [0,∞) is called a subadditive
altering distance function if
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(1) σ ∈ Ψ,
(2) σ(a+ b) ≤ σ(a) + σ(b) for all a, b ∈ [0,∞).

Example 2.3. It is easy to see that the functions σ1(a) = a
1
n , n ∈ N,

and σ2(a) = log(a + 1), a ≥ 0 are such subadditive altering distance
functions.

In the following theorem we prove a new extension of Kannan’s the-
orem.

Theorem 2.4. Let (T , d) be a complete metric space and θ, ϑ : T →
T be mappings such that θ is continuous, injection and sequentially
convergent. Consider σ be a subadditive altering distance function. If
η > 0, µ ≥ 0, 2η + µ < 1, and

σ(d(θϑ(t), θϑ(s)) ≤ η[σ(d(θ(t), θϑ(t))) + σ(d(θ(s), θϑ(s)))]

+ µσ(d(θ(t), θ(s))), (2.1)

for all t, s ∈ T , then ϑ has a unique fixed point.

Proof. Since σ−1(0) = {0}, for every ε > 0, σ(ε) > 0. Suppose that
t0 ∈ T is given and the sequence {tn} be defined as tn+1 = ϑ(tn) for
n = 0, 1, 2, ... . By taking t = tn−1 and s = tn in (2.1) we get

σ(d(θ(tn), θ(tn+1))) = σ(d(θϑ(tn−1), θϑ(tn))

≤ η[σ(d(θ(tn−1), θϑ(tn−1))) + σ(d(θ(tn), θϑ(tn)))]

+ µσ(d(θ(tn−1), θ(tn))).

Therefore,

σ(d(θ(tn), θ(tn+1))) ≤ ασ(d(θ(tn−1), θ(tn))) (2.2)

for each n = 0, 1, 2, ... , and 0 < α = η+µ
1−η < 1.

Then

σ(d(θ(tn), θ(tn+1))) ≤ ασ(d(θ(tn−1), θ(tn)))

≤ α2σ(d(θ(tn−2), θ(tn−1)))

≤ ... ≤ αnσ(d(θ(t0), θ(t1))).

By (2.2), for all m,n ∈ N that n < m, we have

σ(d(θ(tm), θ(tn))) ≤ σ(d(θ(tm), θ(tm−1)) + d(θ(tm−1), θ(tm−2))

+ ...+ d(θ(tn+1), θ(tn)))

≤ σ(d(θ(tm), θ(tm−1))) + σ(d(θ(tm−1), θ(tm−2)))

+ ...+ σ(d(θ(tn+1), θ(tn)))

≤ (αm−1 + αm−2 + ...+ αn)σ(d(θ(t0), θ(t1))).
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So,

σ(d(θ(tm), θ(tn))) ≤ αn

1− α
σ(d(θ(t0), θ(t1))).

Then {θ(tn)} is a Cauchy sequence. Since T is a complete metric space,
there exists z ∈ T such that

lim
n→∞

θ(tn) = z.

Further, the mapping θ : T → T is sequentially convergent. Since
the sequence θ(tn) is convergent, it implies that the sequence tn is also
convergent, i.e. there exists w ∈ T such that lim

n→∞
tn = w. Since θ is

continuous, lim
n→∞

θ(tn) = θ(w). Thus,

σ(d(θϑ(w), θ(tn+1))) = σ(d(θϑ(w), θϑ(tn)))

≤ η[σ(d(θ(w), θϑ(w))) + σ(d(θ(tn), θϑ(tn)))]

+ µσ(d(θ(w), θ(tn)))

= η[σ(d(θ(w), θϑ(w))) + σ(d(θ(tn), θ(tn+1)))]

+ µσ(d(θ(w), θ(tn))). (2.3)

Now, letting n→∞ in (2.3) we get

σ(d(θϑ(w), θ(w))) ≤ η[σ(d(θ(w), θϑ(w))) + σ(0)] + µσ(0).

But d(θϑ(w), θ(w)) = 0, since σ−1(0) = 0 and 0 < η < 1. θ is injection,
and thus ϑ(w) = w. The latter actually means that the mapping ϑ has
a fixed point.
To prove uniqueness, let v be another fixed point of ϑ. Then by (2.2),
we have

σ(d(θ(w), θ(v))) = σ(d(θϑ(w), θϑ(v)))

≤ η[σ(d(θ(w), θϑ(w))) + σ(d(θ(v), θϑ(v)))]

+ µσ(d(θ(w), θ(v)))

= η[σ(d(θ(w), θ(w))) + σ(d(θ(v), θ(v)))]

+ µσ(d(θ(w), θ(v)))

= µσ(d(θ(w), θ(v))).

Since 0 < µ < 1, the last inequality implies that σ(d(θ(w), θ(v))) = 0,
i.e. θ(w) = θ(v). Finally, the injectivity of θ implies w = v. �

By taking µ = 0 in Theorem 2.4, we get the following theorem.

Theorem 2.5. Let (T , d) be a complete metric space and θ, ϑ : T →
T be mappings such that θ is continuous, injection and sequentially
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convergent. If 0 ≤ η < 1
2
, σ ∈ Ψ and

σ(d(θϑ(t), θϑ(s)) ≤ η[σ(d(θ(t), θϑ(t))) + σ(d(θ(s), θϑ(s)))],

for all t, s ∈ T , then ϑ has a unique fixed point.

Similarly, the following theorem could be solved.

Theorem 2.6. Let (T , d) be a complete metric space and θ, ϑ : T →
T be mappings such that θ is continuous, injection and sequentially
convergent. If η > 0, µ ≥ 0, 2η + µ < 1, and

σ(d(θϑ(t), θϑ(s)) ≤ η[σ(d(θ(t), θϑ(s)))+σ(d(θ(s), θϑ(t)))]+µσ(d(θ(t), θ(s))),

for all t, s ∈ T , then ϑ has a unique fixed point.
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