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Abstract. In the following text we classify all “appropriate” weighted
generalized shift isomorphisms on ℓp(Γ) for nonempty set Γ and
p ∈ [1,∞] .

1. Introduction

Let’s recall that for nonempty set Γ and p ∈ [1,∞) we have Ba-
nach spaces ℓp(Γ) = {(xα)α∈Γ ∈ CΓ : Σ

α∈Γ
|xα|p < ∞} equipped with

norm ||(xα)α∈Γ||p =

(
Σ
α∈Γ

|xα|p
) 1

p

(for (xα)α∈Γ ∈ ℓp(Γ)) and ℓ∞(Γ) =

{(xα)α∈Γ ∈ CΓ : sup
α∈Γ

|xα| < ∞} equipped with norm ||(xα)α∈Γ||∞ =

sup
α∈Γ

|xα| (for (xα)α∈Γ ∈ ℓ∞(Γ)). Moreover as it has been mentioned in

[2], for w = (wα)α∈Γ ∈ C and φ : Γ → Γ one may consider “weighted
generalized shift” σφ,w : CΓ → CΓ with σφ,w((xα)α∈Γ) = (wαxφ(α))α∈Γ.
We also know the following statements for t ∈ [1,∞] are equivalent [2,
Theorem 2.1]:
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• σφ,w(ℓ
t(Γ)) ⊆ ℓt(Γ),

• σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is continuous and ||σφ,w ↾ℓt(Γ) || =
sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)} < +∞.

Weighted generalized shifts are generalization of generalized shifts [1]
and weighted shifts.
In the following text for appropriate w we classify all isometric isomor-
phism weighted generalized shifts σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ).

2. Isomorphism weighted generalized shifts

Consider t ∈ [1,∞], φ : Γ → Γ and w = (wα)α∈Γ such that
sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)} < +∞.

Theorem 2.1. σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective if and only if

• φ : Γ → Γ is bijective,
• for all α ∈ Γ we have wα ̸= 0,
• sup

α∈Γ
|wα| < +∞ and sup

α∈Γ

1
|wα| < +∞.

Proof. “⇒” Suppose σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective. We have the
following steps:
Step 1. for all α ∈ Γ we have wα ̸= 0. For β ∈ Γ if wβ = 0,
then σφ,w(ℓ

t(Γ)) = σφ,w(ℓ
t(Γ)) ∩ ℓt(Γ) = {(wαxφ(α))α∈Γ : (xα)α∈Γ ∈

ℓt(Γ)} ∩ ℓt(Γ) ⊆ {(yα)α∈Γ ∈ ℓt(Γ) : yβ = 0} ⊄
=
ℓt(Γ) and σφ,w ↾ℓt(Γ):

ℓt(Γ) → ℓt(Γ) is not surjective which is a contradiction (since we have
supposed σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective). Thus:

∀α ∈ Γ wα ̸= 0 .

Step 2. φ : Γ → Γ is injective. If for distinct β, θ ∈ Γ we have φ(β) =
φ(θ), then σφ,w(ℓ

t(Γ)) ⊆ {(yα)α∈Γ ∈ ℓt(Γ) : rθyβ = rβyθ} ⊄
=
ℓt(Γ) and

σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is not surjective which is in contradiction with
our hypothesis, thus φ : Γ → Γ is one–to–one.
Step 3. φ : Γ → Γ is surjective. If β ∈ Γ\φ(Γ), then for δβα = 0 if α ̸= β

and δββ = 1 we have (δβα)α∈Γ ∈ ℓt(Γ) with σφ,w((δ
β
α)α∈Γ) = (0)α∈Γ =

σφ,w((0)α∈Γ) which is in contradiction with injevtivity of σφ,w ↾ℓt(Γ):
ℓt(Γ) → ℓt(Γ). hence φ : Γ → Γ is surjective.
Step 4. sup

α∈Γ
|wα| < +∞. Since σφ,w(ℓ

t(Γ)) ⊆ (ℓt(Γ)) by [2, Theorem

2.1] we have sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)} < +∞. On the other
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hand

sup
β∈φ(Γ)

||(wα)α∈φ−1(β)||t = sup
β∈Γ

||(wα)α∈φ−1(φ(β))||t

=
steps 2,3

sup
β∈Γ

||(wα)α∈{β}||t = sup
β∈Γ

|wβ|

hence sup
β∈(Γ)

|wβ| < +∞.

Step 5. sup
α∈Γ

1
|wα| < +∞. For α ∈ Γ let uα := 1

wφ−1(α)
and u :=

(uα)α∈Γ. Consider x = (xα)α∈Γ ∈ ℓt(Γ) since σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ)
is bijective, there exists z = (zα)α∈Γ ∈ ℓt(Γ) with σφ,w((zα)α∈Γ) =
(xα)α∈Γ hence for all α ∈ Γ we have wαzφ(α) = xα. So for all α ∈ Γ we
have zα = 1

wφ−1(α)
xφ−1(α) = uαxφ−1(α), which leads to σφ−1,u(x) = z ∈

ℓt(Γ). Using σφ−1,u(ℓ
t(Γ)) ⊆ ℓt(Γ) we have sup{||(uα)α∈(φ−1)−1(β)||t :

β ∈ φ−1(Γ)} < +∞. Using the same method as in Step 4, we have
sup{||(uα)α∈(φ−1)−1(β)||t : β ∈ φ−1(Γ)} = sup

α∈Γ

1
|wα| which completes the

proof of Step 5.
“⇐” Now suppose φ : Γ → Γ is bijective, for all α ∈ Γ we have
wα ̸= 0 and both sup

α∈Γ
|wα|, sup

α∈Γ

1
|wα| are finite. Let uα = 1

wφ−1(α)
and

u := (uα)α∈Γ. Using sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)} = sup
α∈Γ

|wα| <

+∞ and sup{||(uα)α∈(φ−1)−1(β)||t : β ∈ φ−1(Γ)} = sup
α∈Γ

1
|wα| < ∞, we

have:

σφ,w(ℓ
t(Γ)) ⊆ ℓt(Γ), σφ−1,u(ℓ

t(Γ)) ⊆ ℓt(Γ)

It is easy to verify
(
σφ,w ↾ℓt(Γ)

)−1
= σφ−1,u ↾ℓt(Γ) which leads to the

desired result. □
By Theorem 2.1 and[2, Theorem2.1] we have the following corollary:

Corollary 2.2. the following statements are equivalent:
1. σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective,
2. σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is an isomorphism,
3. The following conditions hold:

• φ : Γ → Γ is bijective,
• for all α ∈ Γ we have wα ̸= 0,
• sup

α∈Γ
|wα| < +∞ and sup

α∈Γ

1
|wα| < +∞.

3. Isometric isomorphism weighted generalized shifts

Now we are ready to classify all isometric isomorphism weighted
generalized shifts on ℓt(Γ).
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Theorem 3.1. Consider t ∈ [1,∞], Γ ̸= ∅, φ : Γ → Γ and w =
(wα)α∈Γ ∈ CΓ. Then σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is an isometry isomor-
phism if and only if

• φ : Γ → Γ is bijective,
• for all α ∈ Γ we have |wα| = 1.

Proof. First suppose σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is an isometry iso-
morphism, then σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective and by The-
orem 2.1 φ : Γ → Γ is bijective, moreover for all α ∈ Γ we have
wα ̸= 0 also sup

α∈Γ
|wα| < +∞ and sup

α∈Γ

1
|wα| < +∞. By [2, Theo-

rem 2.1] we have ||σφ,w ↾ℓt(Γ) || = sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)},
by the same argument as in the proof of Step 4 in Theorem 2.1 we
have sup{||(wα)α∈φ−1(β)||t : β ∈ φ(Γ)} = sup

α∈Γ
|wα|. Since σφ,w ↾ℓt(Γ):

ℓt(Γ) → ℓt(Γ) is isometry we have 1 = ||σφ,w ↾ℓt(Γ) || = sup
α∈Γ

|wα|.

Using the same argument as in the proof of Theorem 2.1 we have(
σφ,w ↾ℓt(Γ)

)−1
= σφ−1,u ↾ℓt(Γ) for u = ( 1

wφ−1(α)
)α∈Γ however σφ−1,u ↾ℓt(Γ):

ℓt(Γ) → ℓt(Γ) is isometry too, hence 1 = ||σφ−1,u ↾ℓt(Γ) || = sup
α∈Γ

1
|wα| . By

sup
α∈Γ

|wα| = 1 = sup
α∈Γ

1
|wα| we have |wα| = 1 for all α ∈ Γ.

Now suppose φ : Γ → Γ is bijective and for all α ∈ Γ we have
|wα| = 1. By Theorem 2.1, σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is bijective.
Consider x = (xα)α∈Γ ∈ ℓt(Γ) we have:

||σφ,w(x)||t = ||(wαxφ(α))α∈Γ||t = ||( |wαxφ(α)| )α∈Γ||t
(∀α∈Γ |wα|=1)

= ||( |xφ(α)| )α∈Γ||t
φ:Γ→Γ is bijective

= ||( |xα| )α∈Γ||t = ||x||t
and σφ,w ↾ℓt(Γ): ℓt(Γ) → ℓt(Γ) is an isometry. □
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