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Abstract. In this paper, we introduce a notion of approximate
Connes-biprojectivity for dual Banach algebras. We study the
relation between approximate Connes-biprojectivity, approximate
Connes amenability and φ-Connes amenability. We propose a cri-
terion to show that certain dual triangular Banach algebras are
not approximately Connes-biprojective. Next we show that for a
locally compact group G, the Banach algebra M(G) is approxi-
mately Connes-biprojective if and only if G is amenable. Finally
for an infinite commutative compact group G we show that the
Banach algebra L2(G) with convolution product is approximately
Connes-biprojective, but it is not Connes-biprojective.
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1. Introduction

One of the most important notion in the theory of homological
Banach algebras is biprojectivity which introduced by Helemskii [7].
Indeed, A Banach algebra A is called biprojective, if there exists a
bounded A-bimodule morphism ρ : A → A⊗̂A, such that ρ is a right
inverse for πA, where πA : A⊗̂A → A is the product morphism which
is given by πA(a⊗ b) = ab, for every a, b ∈ A.

Recently, approximate homological notion like approximate bipro-
jectivity of Banach algebras have been studied by Zhang [21]. Indeed,
a Banach algebra A is called approximately biprojective, if there ex-
ists a net (ρα) of continuous A-bimodule morphisms from A into A⊗̂A
such that πA◦ρα(a) → a, for every a ∈ A. For more information about
approximate biprojectivity of some semigroup algebras, see [18].

There exists a class of Banach algebras which is called dual Banach
algebras. This category of Banach algebras defined by Runde [14].
Let A be a Banach algebra. A Banach A-bimodule E is called dual
if there is a closed submodule E∗ of E∗ such that E = (E∗)

∗. The
Banach algebra A is called dual if it is dual as a Banach A-bimodule.
A dual Banach A-bimodule E is normal if for each x ∈ E the module
maps A −→ E; a 7→ a · x and a 7→ x · a are wk∗-wk∗ continuous.
Let A be a Banach algebra and let E be a Banach A-bimodule. A
bounded linear map D : A → E is called a bounded derivation if
D(ab) = a ·D(b) +D(a) · b, for every a, b ∈ A. A bounded derivation
D : A → E is called inner if there exists an element x in E such that
D(a) = a ·x−x ·a (a ∈ A). A dual Banach algebra A is called Connes
amenable if for every normal dual Banach A-bimodule E, every wk∗-
continuous derivation D : A −→ E is inner. For a given dual Banach
algebra A and a Banach A-bimodule E, σwc(E) denote the set of all
elements x ∈ E such that the module maps A → E; a 7→ a · x and
a 7→ x · a are wk∗-wk-continuous. It is a closed submodule of E, see
[14] and [15] for more details. Note that, since σwc(A∗) = A∗, the
adjoint of πA maps A∗ into σwc(A⊗̂A)∗. Therefore π∗∗

A drops to an
A-bimodule morphism πσwc : (σwc(A⊗̂A)∗)∗ −→ A. Every element
M ∈ (σwc(A⊗̂A)∗)∗ satisfying

a ·M = M · a and aπσwcM = a (a ∈ A),

is called a σwc-virtual diagonal for A. Runde showed that a dual
Banach algebra A is Connes amenable if and only if there exists a
σwc-virtual diagonal for A [15, Theorem 4.8].

A dual Banach algebra A is called Connes-biprojective if there exists
a bounded A-bimodule morphism ρ : A −→ (σwc(A⊗̂A)∗)∗ such that
πσwc ◦ ρ = idA . Shirinkalam and the second author proved that a
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dual Banach algebra A is Connes amenable if and only if A is Connes-
biprojective and it has an identity [20]. They characterized Connes-
biprojectivity of the measure algebraM(G) for a locally compact group
G. We extend this result for the following new notion.

Motivated by the definitions of approximate biprojectivity [21] and
Connes-biprojectivity, we introduce a new class of dual Banach alge-
bras.

Definition 1.1. A dual Banach algebra A is called approximately
Connes-biprojective if there exists a (not necessarily bounded) net
(ρα)α of continuousA-bimodule morphisms fromA into (σwc(A⊗̂A)∗)∗

such that
πσwc ◦ ρα(a) → a (a ∈ A).

It is clear that every Connes-biprojective dual Banach algebra is
approximately Connes-biprojective and the same result holds for every
approximately biprojective dual Banach algebra.

In this paper we study the notion of approximately Connes-biprojectivity
of dual Banach algebras. We show that there exists a relation be-
tween this new notion and φ-Connes amenability. Using this criterion,
we investigate approximate Connes-biprojectivity of triangular Banach
algebras. We study approximate Connes-biprojectivity of some dual
Banach algebras associated with locally compact groups. More pre-
cisely, we show that for a locally compact group G, the measure al-
gebra M(G) is approximately Connes-biprojective if and only if G is
amenable. We extend the Example in [21, §2] to the approximately
Connes-biprojective case and we show that for an infinite commutative
compact group G the Banach algebra L2(G) with convolution product
is approximately Connes-biprojective, but not Connes-biprojective.

2. Approximate Connes-biprojectivity

For two Banach spaces X and Y , we denote by B(X,Y ) the space
of all bounded linear operators from X to Y . Recall that the weak*
operator topology (W ∗OT ) on B(X, Y ∗) is the locally convex topology
determined by the seminorms {px,y : x ∈ X, y ∈ Y }, where px,y(T ) =
|⟨y, Tx⟩|. Indeed the net (Tα) ⊂ B(X, Y ∗) converges to T in the weak*
operator topology of B(X, Y ∗) if Tα(x) converges to T (x) in the weak*
topology of Y ∗, for every x ∈ X.

Remark 2.1. If the net (ρα) in definition 1.1 is bounded, then the
notions approximate Connes biprojectivity and Connes biprojectivity
are the same. On bounded sets, the W ∗OT coincides with the wk∗-
topology ofB(A, (σwc(A⊗̂A)∗)∗), where identified with (A⊗̂σwc(A⊗̂A)∗)∗.
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Since the unit ball of B(A, (σwc(A⊗̂A)∗)∗) is W ∗OT -compact, the net
(ρα) has W

∗OT -limit point. Let ρ = W ∗OT - lim
α

ρα. It follows that

ρ(ab) = wk∗- lim
α

ρα(ab) = wk∗- lim
α

a·ρα(b) = a·wk∗- lim
α

ρα(b) = a·ρ(b)

and by similarity for the right action, ρ(ab) = ρ(a) · b. So ρ : A →
(σwc(A⊗̂A)∗)∗ is a bounded A-bimodule morphism and also

πσwc ◦ ρ(a) = πσwc(wk
∗- lim

α
ρα(a)) = wk∗- lim

α
πσwc ◦ ρα(a) = a.

Some new generalization of Connes amenability like approximate
Connes amenability have been introduced by Esslamzadeh et al. [6].
A unital dual Banach algebra A is approximately Connes amenable if
and only if there exists a net (Mα) in (σwc(A⊗̂A)∗)∗ such that a ·Mα−
Mα · a → 0 and πσwc(Mα)a → a, for every a ∈ A [6, Theorem 3.3].

Note that a dual Banach algebra A has a bounded approximate
identity if and only if A has an identity.

Theorem 2.2. Let A be a dual Banach algebra. If A is approx-
imately Connes-biprojective and has an identity, then A is approxi-
mately Connes amenable.

We recall that a Banach algebra A is left φ-contractible, where φ is
a linear multiplication functional on A, if there exists m ∈ A such that
am = φ(a)m and φ(m) = 1, for every a ∈ A [8], [11]. The notion of
φ-Connes amenability for a dual Banach algebra A, where φ is a wk∗-
continuous character on A, was introduced by Mahmoodi and some
characterizations were given [10]. We say that A is φ-Connes amenable
if there exists a bounded linear functional m on σwc(A∗) satisfying
m(φ) = 1 and m(f ·a) = φ(a)m(f), for every a ∈ A and f ∈ σwc(A∗).
It was shown by Ramezanpour [12, Proposition 2.3] and independently
by Mahmoodi [9] that the concept of φ-Connes amenability is equiva-
lent with left φ-contractibility for a dual Banach algebra, where φ is a
wk∗-continuous character . The set of all wk∗-continuous character on
A is denoted by ∆wk∗(A).

Remark 2.3. Let A be a dual Banach algebra and let X be a Banach
A-bimodule. Since σwc(X∗) is a closed A-submodule of X∗, we have a
quotient map q : X∗∗ −→ (σwc(X∗))∗ defined by q(u) = u|σwc(X∗), for
every u ∈ X∗∗.

By inspiration of the main idea that used in [2, Proposition 2.8.41]
and [17, Theorem 3.1], we state the following theorem.

Theorem 2.4. Let A be an approximately Connes-biprojective dual
Banach algebra and let φ ∈ ∆wk∗(A) such that kerφ = A kerφ. Then
A is left φ-contractible.
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Example 2.5. Consider the Banach algebra ℓ1 of all sequences a =
(an) of complex numbers with

∥a∥ =
∞∑
n=1

|an| < ∞,

and the following product

(a ∗ b)(n) =
{

a(1)b(1) if n = 1
a(1)b(n) + b(1)a(n) + a(n)b(n) if n > 1

for every a, b ∈ ℓ1. By simple argument ℓ1 is a dual Banach algebra
with respect to c0. We claim that ℓ1 is not approximately Connes-
biprojective. We assume in contradiction that ℓ1 is approximately
Connes-biprojective. Since ℓ1 is unital, by Theorem 2.4, ℓ1 is left φ1-
contractible, where φ1 is a wk∗-continuous character on ℓ1 defined by
φ1(a) = a(1). So there exists m ∈ ℓ1 satisfying

a ∗m = φ1(a)m and φ1(m) = m(1) = 1 (a ∈ ℓ1). (2.1)

Choose a = δn, where n ≥ 2. By (2.1), we have δn ∗m = 0. It follows
that [m(1) + m(n)]δn = 0. Therefore m(n) = −1, for every n ≥ 2,
which is a contradiction with ∥m∥1 < ∞.

3. Applications to triangular Banach algebras

Let A and B be Banach algebras and let X be a Banach A − B-
module. That is, X is a Banach left A-module and a Banach right
B-module satisfying (a · x) · b = a · (x · b) and ||a · x · b|| ≤ ||a|| ||x|| ||b||,
for every a ∈ A, b ∈ B and x ∈ X. Consider

Tri(A,B, X) =

(
A X
0 B

)
,

with the usual matrix operations and

||
(

a x
0 b

)
|| = ||a||+ ||x||+ ||b|| (a ∈ A, x ∈ X, b ∈ B),

T ri(A,B, X) becomes a Banach algebra which is called a triangular
Banach algebra.
Note that if A is a dual Banach algebra, then Tri(A,A,A) is a dual
Banach algebra with respect to the predual A∗⊕∞A∗⊕∞A∗.

Theorem 3.1. Let A be a dual Banach algebra with a left approximate
identity and let φ ∈ ∆wk∗(A). Then Tri(A,A,A) is not approximately
Connes-biprojective.
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Let S be the set of natural numbers N with maximum as its product.
Then S is a weakly cancellative semigroup, that is, for every s, t ∈ S
the set {x ∈ S : sx = t} is finite [3, Example 3.36]. ℓ1(S) is a dual
Banach algebra with predual c0(S) [3, Theorem 4.6].

Corollary 3.2. Let S = (N,max). Then Tri(ℓ1(S), ℓ1(S), ℓ1(S)) is
not approximately Connes-biprojective.

Let A be a Banach algebra and let E be a Banach A-bimodule. An
element x ∈ E is called weakly almost periodic if the module maps
A −→ E; a 7→ a · x and a 7→ x · a are weakly compact. The set
of all weakly almost periodic elements of E is denoted by WAP (E)
which is a norm closed sub-bimodule of E [15, Definition 4.1]. For a
Banach algebra A, Runde observed that F (A) = WAP (A∗)∗ is a dual
Banach algebra with the first Arens product inherited from A∗∗. He
also showed that F (A) is a canonical dual Banach algebra associated
to A [15, Theorem 4.10].

We recall that if E is a Banach A-bimodule, then E∗ is also a Banach
A-bimodule via the following actions

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ E, f ∈ E∗).

Corollary 3.3. Let S = (N,min). Then Tri(F (ℓ1(S)), F (ℓ1(S)), F (ℓ1(S)))
is not approximately Connes-biprojective.

4. Applications to some Banach algebras related to a
locally compact group

Let G be a locally compact group. It is well-known that the measure
algebra M(G) is a dual Banach algebra [16, Example 4.4.2].

Theorem 4.1. For a locally compact group G, the followings are equiv-
alent:

(i) G is amenable,
(ii) M(G) is approximately Connes-biprojective.

Zhang showed that the Banach algebra ℓ2(S) with the pointwise mul-
tiplication is approximately biprojective but it is not biprojective [21,
§2]. We extend this example to the approximately Connes-biprojective
case.

Note that ℓp(S) for 1 ≤ p < ∞ and arbitrary set S with pointwise
multiplication is a dual Banach algebra.

Theorem 4.2. Let S be an infinite set. Then ℓ2(S) is approximately
Connes-biprojective but it is not Connes-biprojective.
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Let G be a locally compact group. Rickert showed that L2(G) is a
Banach algebra with convolution if and only if G is compact [13].

The proof of the following Corollary is similar to the [19, Theorem
2.17]. Therefore we omit it:

Corollary 4.3. Let G be an infinite commutative compact group. Then
L2(G) with convolution is approximately Connes-biprojective, but it is
not Connes-biprojective.
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