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Abstract. In this talk, we study the relationship between some
generalization of nonexpansive mappings and obtain some fixed
point theorems for these class of mappings. As a corollary we
show that every Hilbert space and every lp space, where 1 < p ≤
2, have the fixed point property for (α, β)-nonexpansive mapping
with α > 0 and β ≥ 0 such that α+ β < 1.

1. Introduction

Let C be a nonempty subset of a Banach space (X, ∥.∥) and let
T : C → X. Recall that T is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥
for each x, y ∈ C. A point p ∈ C is called a fixed point for T when
Tp = p and the fixed point set of T is denoted by Fix(T ). Also T is
said to be a quasi-nonexpansive, if Fix(T ) ̸= ∅ and for every p ∈ Fix(T )
and x ∈ C, ∥Tx− p∥ ≤ ∥x− p∥.

Fixed point theorems for nonexpansive mappings and generalization
of nonexpansive mappings is an important topic in metric fixed point
theory. Therefore in the recent years, several generalizations of nonex-
pansive mappings have received attention and their fixed point theory
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and the relationship between them, have been studied by many authors,
see [1, 2, 3] and the references therein.

In the following we have some definitions and results which will be
used in the sequel.

Definition 1.1. [5] We will say that a Banach space X satisfies the
Opial’s condition if for every weakly null sequence (xn) and every x ̸= 0
in X, we have

lim inf
n→∞

∥xn∥ < lim inf
n→∞

∥xn + x∥.

Every Hilbert space satisfies the Opial’s condition [4].
Let C be a nonempty subset of Banach space X and T : C → C be a
mapping. The sequence (xn) ⊆ C is called an approximate fixed point
sequence (a.f.p.s) for T provided that ∥xn − Txn∥ → 0.

Definition 1.2. [3] Let C be a nonempty subset of Banach space X.
We say that the mapping T : C → X satisfies condition (A) on C
whenever there exists an a.f.p.s for T in each nonempty bounded closed
convex and T -invariant subset D of C (Tx ⊆ D for any x ∈ D).

Definition 1.3. [3] Let C be a nonempty bounded closed convex subset
of Banach space X. A mapping T : C → X satisfies condition (L),(or
it is an (L)-type mapping), on C provided that it fulfills condition (A)
on C and for any a.f.p.s (xn) of T in C and each x ∈ C,

lim sup
n→∞

∥xn − Tx∥ ≤ lim sup
n→∞

∥xn − x∥.

Definition 1.4. Let X be a Banach space and F be a class of mapping
on X. We say that X has fixed point property (FPP) for F , if for
every nonempty weakly compact convex subset C of X every mapping
T : C → C of F has a fixed point.

2. Main results

In 2018, Amini-Harandi et. al. introduced a two parametric class of
nonlinear mappings [1].

Definition 2.1. [1] Let C be a nonempty subset of a Banach space
X and let α, β ∈ R. A mapping T : C → X is said to be (α, β)-
nonexpansive mapping if, for each x, y ∈ C,

∥Tx− Ty∥2 ≤ α∥y − Tx∥2 + α∥x− Ty∥2 + β∥x− Tx∥2 + β∥y − Ty∥2

+(1− 2α− 2β)∥x− y∥2.

Now we obtain a characterization of (α, β)-nonexpansive mapping in
Hilbert spaces.
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Definition 2.2. Let H be a Hilbert space and let C be a nonempty
subset of H. Let λ and µ be two real number. A mapping T : C → H
is said to be (λ, µ)-hybrid if

∥Tx−Ty||2 ≤ ∥x−y∥2+2(1−λ)⟨x−Tx, y−Ty⟩+2(1−µ)⟨x−Ty, y−Tx⟩,

for each x, y ∈ C.

Proposition 2.3. Let H be a Hilbert space, C be a nonempty subset of
H and let T : C → H be a mapping. Let λ and µ be two real numbers
such that λ + µ < 3 and put α = 1−λ

3−λ−µ
and β = 1−µ

3−λ−µ
. Then T is

(λ, µ)-hybrid if and only if T be an (α, β)-nonexpansive mapping.

In Example 2.1 of [1] we see that, there exists a ( 1
1000

, 8
9
)-nonexpansive

mapping, which is not an (L)-type mapping. Now we introduce a new
class of generalized nonexpansive mapping, which is an extention of
the (L)-type mapping and contain the the class of (α, β)-nonexpansive
mapping with α > 0 and β ≥ 0 such that α+ β < 1.

Definition 2.4. Let C be a nonempty subset of Banach space X. A
mapping T : C → X is called (H)-type mapping if it fulfills condition
(A) on C and there exists 0 ≤ λ < 1, such that for any a.f.p.s (xn) of
T in C and each x ∈ C,

lim sup
n→∞

∥xn − Tx∥2 ≤ lim sup
n→∞

∥xn − x∥2 + λ∥x− Tx∥2.

Proposition 2.5. Let C be a nonempty bounded subset of Banach
space X and let T : C → X be an (α, β)-nonexpansive mapping with
α > 0 and β ≥ 0 such that α+β < 1. Then T is an (H)-type mapping.

Remark 2.6. In Example 2.1 of [1] there exists a ( 1
1000

, 8
9
)-nonexpansive

mapping, which is not quasi-nonexpansive. Then by Proposition 2.5,
this mapping is an (H)-type mapping which is not (L)-type nor quasi-
nonexpansive.

Theorem 2.7. Every Hilbert space and every lp space, where 1 < p ≤
2, have FPP for (H)-type mapping.

Corollary 2.8. Every Hilbert space and every lp space, where 1 < p ≤
2, have FPP for (α, β)-nonexpansive mapping with α > 0 and β ≥ 0
such that α + β < 1.

Corollary 2.9. Let C be a nonempty weakly compact convex subset of
Hilbert space H or lp space, where 1 < p ≤ 2 and let T : C → C be an
(H)-type mapping. Then I − T is demiclosed, that is, if (xn) be a.f.p.s
of T that is weakly convergent to x ∈ C, then x ∈ FixT .
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