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Abstract. In this paper, we study some characterizations of real
valued h-convex functions.

1. Introduction

We say that [3] f : I → R is a Godunova-Levin function or that f
belongs to the class Q(I) if f is non-negative and for all x, y ∈ I and
t ∈ (0, 1) we have

f(tx + (1− t)y) ≤ f(x)

t
+

f(y)

1− t
.

For s ∈ (0, 1], a function f : [0,∞) → [0,∞) is said to be s-convex
function, or that f belongs to the class K2

s , if

f(tx + (1− t)y) ≤ tsf(x) + (1− t)sf(y)

for every x, y ∈ [0,∞) and t ∈ [0, 1], see [1]. Also, we say that f : I →
[0,∞) is a P -function [2], or that f belongs to the class P (I), if for all
x, y ∈ I and t ∈ [0, 1] we have

f(tx + (1− t)y) ≤ f(x) + f(y) .
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Throughout this paper, suppose that I and J are intervals in R, (0, 1) ⊆
J and functions h and f are real non-negative functions defined on J
and I, respectively.

In [5], Varošanec defined the h -convex function as follows:
Let h : J ⊆ R → R be a non-negative function, h 6≡ 0. We say
that f : I → R is a h-convex function, or that f belongs to the class
SX(h, I), if f is non-negative and for all x, y ∈ I, t ∈ (0, 1) we have

f(tx + (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) . (1.1)

If inequality (1.1) is reversed, then f is said to be h-concave, that is
f ∈ SV (h, I).

Obviously, if h(t) = t, then all non-negative convex functions belong
to SX(h, I) and all non-negative concave functions belong to SV (h, I).
If h(t) = 1

t
, then SX(h, I) = Q(I); if h(t) = 1, then SX(h, I) ⊇ P (I);

and if h(t) = ts, where s ∈ (0, 1), then SX(h, I) ⊇ K2
s .

A function h : J → R is said to be a super-additive function if

h(x + y) ≥ h(x) + h(y) , (1.2)

for all x, y ∈ J . If inequality (1.2) is reversed, then h is said to be a
sub-additive function. If the equality holds in (1.2), then h is said to
be a additive function.

The function h is called a super-multiplicative function if

h(xy) ≥ h(x)h(y) , (1.3)

for all x, y ∈ J [5]. If inequality (1.3) is reversed, then h is called a sub-
multiplicative function. If the equality holds in (1.3), then h is called
a multiplicative function.

Example 1.1. [5] Consider the function h : [0,+∞) → R by h(x) =
(c + x)p−1. If c = 0, then the function h is multiplicative. If c ≥ 1,
then for p ∈ (0, 1) the function h is super-multiplicative and for p > 1
the function h is sub-multiplicative.

2. Main results

Assume that C is a convex subset of a linear space X and f is
an arbitrary real-valued function on C. The non-negative function
f : C → R is called h-convex function on C, if f(tx + (1 − t)y) ≤
h(t)f(x) + h(1− t)f(y) for every x, y ∈ C and t ∈ [0, 1].

Let x and y be two fixed elements in C. Define the map fx,y as
follows:

fx,y : [0, 1]→ R , fx,y(t) = f(tx + (1− t)y) .

The following theorem is a characterization of h-convex functions.
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Theorem 2.1 (First characterization). With the above assumptions,
the following statements are equivalent:

(i) f is a h-convex function on C.
(ii) The mapping fx,y is a h-convex function on [0, 1], for any x, y ∈

C.

Now, for fixed t ∈ [0, 1], we define the function ft : C2 → R by
ft(x, y) = f(tx + (1− t)y).

In the next theorem, we state a new characterization of h-convex
functions.

Theorem 2.2 (Second characterization). The following statements of
h-convex functions hold:

(i) If f is a h-convex function on C, then ft is a h-convex function
on C2 for every t ∈ [0, 1].

(ii) If C is a cone in X and ft is a h-convex function on C2 for
every t ∈ (0, 1), then f is a h-convex function on C.

Theorem 2.3 (Third characterization). Let h be a strictly positive
multiplicative function, then the following statements are equivalent:

(i) f is a h-convex function.
(ii) If (1 + s)x− sy ∈ C, for every x, y ∈ C and s ≥ 0, then

f
(
(1 + s)x− sy

)
≥ h(1 + s)f(x)− h(s)f(y) . (2.1)

Theorem 2.4. (i) Assume that X is a real vector space and f :
X → R is an even h-convex function. Then

f((1− 2t)x) + f((2t− 1)y)

h(t) + h(1− t)
≤f
(
(1− t)x + ty

)
+ f
(
tx + (1− t)y

)
≤[h(t) + h(1− t)][f(x) + f(y)] . (2.2)

(ii) Let X be a topological vector space, h be an integrable strictly
positive function and f be a continuous even h-convex function,
then

1

2

∫ 1

0

[f(tx)+f(ty)] dt ≤
∫ 1

0

[h(t)+h(1− t)]f
(
tx+(1− t)y

)
dt . (2.3)

In addition, if h is super-additive, then

1

2h(1)
(∫ 1

0
h(t) dt

) ∫ 1

0

[f(tx) + f(ty)] dt ≤ f(x) + f(y) . (2.4)
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Corollary 2.5. (i) Assume that X is a real vector space and f :
X → R is an even convex function. Then

f((1− 2t)x) + f((2t− 1)y) ≤f
(
(1− t)x + ty

)
+ f
(
tx + (1− t)y

)
≤f(x) + f(y) . (2.5)

(ii) Let X be a topological vector space and f be a continuous even
convex function, then

1

2

∫ 1

0

[f(tx) + f(ty)] dt ≤
∫ 1

0

f
(
tx+ (1− t)y

)
dt ≤ f(x) + f(y) . (2.6)

Proof. Enough put in Theorem 2.4, h(t) = t. �

Corollary 2.6. [4, Lemma 3.2]

(i) Assume that X is a real vector space and f : X → R is an even
function in P (I). Then

f((1− 2t)x) + f((2t− 1)y)

2
≤f
(
(1− t)x + ty

)
+ f
(
tx + (1− t)y

)
≤2
(
f(x) + f(y)

)
. (2.7)

(ii) Let X be a topological vector space and f be a continuous even
function in P (I), then

1

4

∫ 1

0

[f(tx) + f(ty)] dt ≤
∫ 1

0

f
(
tx+ (1− t)y

)
dt ≤ f(x) + f(y) . (2.8)

Proof. In Theorem 2.4, put h(t) = 1. �

Example 2.7. [4, Theorem 3.3] Let (X, ‖ · ‖) be a normed space,
x, y ∈ X and 0 < p < 1. Since f(x) = ‖x‖p is an even continuous
P -convex function, we have the following Hermit-Hadamard inequality

‖x‖p + ‖y‖p

4(p + 1)
≤
∫ 1

0

‖(1− t)x + ty‖pdt ≤ ‖x‖p + ‖y‖p .
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