
The Extended Abstracts of

The 6th Seminar on Functional Analysis and its Applications

4-5th March 2020, University of Isfahan, Iran

JENSEN-MERCER TYPE INEQUALITY FOR
h-CONVEX FUNCTIONS

FARZOLLAH MIRZAPOUR 1, ALI MORASSAEI1∗

1 Department of Mathematics, Faculty of Sciences, University of Zanjan,
University Blvd., Zanjan 45371-38791, IRAN.

f.mirza@znu.ac.ir
morassaei@znu.ac.ir

Abstract. Mercer proved that if f is a convex function, then

f
(
x1 + xn −

n∑
j=1

tjxj

)
≤ f(x1) + f(xn)−

n∑
j=1

tjf(xj) .

where xj ’s also satisfy in the condition 0 < x1 ≤ x2 ≤ · · · ≤ xn,
tj ≥ 0 and

∑n
j=1 tj = 1. In this paper, we extend the Jensen-

Mercer type inequality for real valued h-convex functions.

1. Introduction

We say that [3] f : I → R is a Godunova-Levin function or that f
belongs to the class Q(I) if f is non-negative and for all x, y ∈ I and
t ∈ (0, 1) we have

f(tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t
.

For s ∈ (0, 1], a function f : [0,∞) → [0,∞) is said to be s-convex
function, or that f belongs to the class K2

s , if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)
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for every x, y ∈ [0,∞) and t ∈ [0, 1], see [1]. Also, we say that f : I →
[0,∞) is a P -function [2], or that f belongs to the class P (I), if for all
x, y ∈ I and t ∈ [0, 1] we have

f(tx+ (1− t)y) ≤ f(x) + f(y) .

Throughout this paper, suppose that I and J are intervals in R, (0, 1) ⊆
J and functions h and f are real non-negative functions defined on J
and I, respectively.

In [5], Varošanec defined the h -convex function as follows:
Let h : J ⊆ R → R be a non-negative function, h 6≡ 0. We say
that f : I → R is a h-convex function, or that f belongs to the class
SX(h, I), if f is non-negative and for all x, y ∈ I, t ∈ (0, 1) we have

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) . (1.1)

If inequality (1.1) is reversed, then f is said to be h-concave, that is
f ∈ SV (h, I).

Obviously, if h(t) = t, then all non-negative convex functions belong
to SX(h, I) and all non-negative concave functions belong to SV (h, I).
If h(t) = 1

t
, then SX(h, I) = Q(I); if h(t) = 1, then SX(h, I) ⊇ P (I);

and if h(t) = ts, where s ∈ (0, 1), then SX(h, I) ⊇ K2
s .

A function h : J → R is said to be a super-additive function if

h(x+ y) ≥ h(x) + h(y) , (1.2)

for all x, y ∈ J . If inequality (1.2) is reversed, then h is said to be a
sub-additive function. If the equality holds in (1.2), then h is said to
be a additive function.

The function h is called a super-multiplicative function if

h(xy) ≥ h(x)h(y) , (1.3)

for all x, y ∈ J [5]. If inequality (1.3) is reversed, then h is called a sub-
multiplicative function. If the equality holds in (1.3), then h is called
a multiplicative function.

Example 1.1. [5] Consider the function h : [0,+∞) → R by h(x) =
(c + x)p−1. If c = 0, then the function h is multiplicative. If c ≥ 1,
then for p ∈ (0, 1) the function h is super-multiplicative and for p > 1
the function h is sub-multiplicative.

2. Main results

In [4], Mercer proved that

f

(
x1 + xn −

n∑
j=1

tjxj

)
≤ f(x1) + f(xn)−

n∑
j=1

tjf(xj) . (2.1)
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where xj’s also satisfy in the condition 0 < x1 ≤ x2 ≤ · · · ≤ xn, tj ≥ 0
and

∑n
j=1 tj = 1.

In this section, we present Jensen-Mercer inequality for h-convex
functions.

Theorem 2.1. [5, Theorem 19] Let t1, · · · , tn be positive real numbers
(n ≥ 2). If h is a non-negative super-multiplicative function, f is a
h-convex function on I and x1, · · · , xn ∈ I, then

f

(
1

Tn

n∑
j=1

tjxj

)
≤

n∑
j=1

h

(
tj
Tn

)
f(xj) , (2.2)

where Tn =
∑n

j=1 tj.

Lemma 2.2. Let 0 < x ≤ y and f be a h-convex function, then for
every z ∈ [x, y], there exists λ ∈ [0, 1] such that

f(x+ y − z) ≤ [h(λ) + h(1− λ)][f(x) + f(y)]− f(z) . (2.3)

Moreover, if h is super-additive, then

f(x+ y − z) ≤ h(1)[f(x) + f(y)]− f(z) .

Theorem 2.3. Let f be a h-convex function on an interval containing
the xj (j = 1, · · · , n) such that 0 < x1 ≤ · · · ≤ xn, then

f

(
x1 + xn −

n∑
j=1

tjxj

)

≤

(
n∑

j=1

h(tj)[h(λj) + h(1− λj)]

)(
f(x1) + f(xn)

)
−

n∑
j=1

h(tj)f(xj) ,

where for every j = 1, · · · , n, there exists λj ∈ [0, 1] such that xj =
λjx1 + (1− λj)xn.

Corollary 2.4. With the assumptions of previous theorem, if h is a
super-additive function such that for every probability vector (t1, · · · , tn),∑n

j=1 h(tj) ≤ 1, then

f

(
x1 + xn −

n∑
j=1

tjxj

)
≤ h(1)

(
f(x1) + f(xn)

)
−

n∑
j=1

h(tj)f(xj) .

Moreover, if h is multiplicative, then

f

(
x1 + xn −

n∑
j=1

tjxj

)
≤ f(x1) + f(xn)−

n∑
j=1

h(tj)f(xj) .
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