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Abstract. Shearlet frames are used to solve N-dimensional heat
equation numerically. The proposed method is mathematically
simple and fast. To demonstrate the performance and efficiency of
the developed formulation an example in the case of two-dimensions
is presented. By this approach the coefficients of the shearlet frame
expansion are obtained via separate time independent partial dif-
ferential equations and the number of these coefficients are decided
according to the desirable accuracy of the solution.

1. Introduction

Heat equation is categorized as parabolic second order partial differ-
ential equations. This kind of equations appear in different scientific
fields. Several numerical techniques have so far been developed for
solution of transient heat transfer problems. Among these methods,
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finite difference methods [16, 14, 17], finite element methods [15, 20],
spectral methods [5, 19], etc. can be mentioned.

Amongst the numerical approaches the wavelet-based numerical meth-
ods have been developed and have widely used to solve the various types
of heat equation in different dimensions, for examples see [2, 4, 9, 10].
Curvelets have also been employed for solution of PDE problems, e.g.
solution of two dimensional wave equation [18].

Shearlets are newer representation systems that are equipped with
a rich mathematical structure similar to wavelets [6, 12, 13]. In fact,
theory and algorithms of shearlets can be carried over the continu-
ous wavelet transform. The continuous shearlet transform is based on
special affine systems generated by one single function ψ ∈ L2(R2).
Moreover, compared with wavelets, the continuous shearlet transform
has a coherent matrix structure for n-dimensions so that it is useful for
solving the higher dimensional PDEs [1].

In this paper, an approach for solution of heat equation in the general
case of n-dimensions is presented. The unknown function is expanded
by using shearlet frames and then by employing Fourier transform and
making use of Plancherel theorem, as well as properties of shearlets,
the unknown coefficients of the expansion are obtained by solving far
simpler separate time independent partial differential equations.

The paper is organized as follows. In the rest of this section, we
present some necessary definitions and theorems. Section 2 is devoted
to the development of n-dimensional formulation. In section 3 an ex-
ample of a two-dimensional heat problem is presented. The conclusions
and merits of the approach are concisely discussed in section 4.

Firstly, we present required notation and definitions about shearlets.
Let {ψj,k,m(·)}j,k,m be a family of shearlets in n-dimensions as

ψj,k,m(·) = | detA2j |−
1
2ψ(A−1

2j
S−1
k (· −m)), (1.1)

where j ∈ Z, k ∈ Zn−1,m ∈ Zn and ψ ∈ L2(Rn) is admissible in the
sense that

Cψ =

∫
Rn

|ψ̂(ξ)|2

|ξ1|2
dξn · · · dξ1 <∞, (1.2)

and

A2j =

[
2j 0Tn−1

0n−1 2
j
2 In−1

]
, Sk =

[
1 kT

0n−1 In−1

]
, (1.3)

in special case, n = 2, we have

ψj,k,m(·) = 2−
3
4ψ(A−1

2j
S−1
k (· −m)),
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where j, k ∈ Z,m ∈ Z2,

A2j =

[
2j 0

0 2
j
2

]
, Sk =

[
1 k
0 1

]
,

Definition 1.1. Let ψ1 ∈ L2(R) be a admissible wavelet with ψ̂1 ∈
C∞(R) and supp ψ̂1 ⊆ [−2,−1

2
] ∪ [1

2
, 2]. Consider ψ2 ∈ L2(Rn−1) be

such that ψ̂2 ∈ C∞(Rn−1) and supp ψ̂2 ⊆ [−1, 1]n−1, then the function
ψ ∈ L2(Rn) defined by

ψ̂(ξ) = ψ̂(ξ1, ξ̃) = ψ̂1(ξ1) · ψ̂2(
ξ̃

ξ1
),

where ξ̃ = (ξ2, · · · , ξn) is a continuous shearlet.
Let ψ1 ∈ L2(R) satisfies the discrete Calderon’s condition∑

j∈Z

|ψ̂1(2
−jξ)|2 = 1,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−1
2
] ∪ [1

2
, 2]. Consider ψ2 ∈

L2(Rn) is a bump function such that for all ξ ∈ [−1, 1]n−1,

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1,

where ψ̂2 ∈ C∞(Rn−1) and supp ψ̂2 ⊆ [−1, 1]n−1.
For instance, for n = 2. Let ψ1 ∈ L2(R) be a Lemarie’-Meyer wavelet

that satisfies the discrete Calderon’s condition∑
j∈Z

|ψ̂1(2
−jξ)|2 = 1,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−1
2
]∪ [1

2
, 2]. Consider ψ2 ∈ L2(R)

is a bump function such that for all ξ ∈ [−1, 1],

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1,

where ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1].
We have ψ as

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(
ξ2
ξ1
).

The shearlet ψ as defined in above is called a classical shearlet [12].
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For case of n, we will show that the classical shearlet can be defined
as follows

ψ̂(ξ1, ξ̃) = ψ̂1(ξ1)ψ̂2(
ξ̃

ξ1
),

where ψ̂1, v(x), b(ξ) is the same of example in [3] and consider I =
{i1, i2, · · · , ini

} ⊆ {2, 3, · · · , n} ; J = {j1, j2, · · · , jnj
} ⊆ {2, 3, · · · , n}

be such that I ∩ J = ∅. Now, we defined ψ̂2(ξ̃) as follows

ψ̂2

2
(ξ̃) = ψ̂2

2
(ξ2, ξ3, · · · , ξn) = v(1−ξi1) · · · v(1−ξini

)v(1+ξj1) · · · v(1+ξjnj
)

where v is the function defined in [3],
ξin′ ≥ 0 for n′ = 1, 2, · · · , ni,
ξin′′ ≤ 0 for n′′ = 1, 2, · · · , nj,

and ni + nj = n − 1 It can be shown that ψ̂2 are satisfied in the
conditions mentioned in definition 1.1.

In the following, we will show that ψ̂2 satisfies the conditions in
Definition 1.1. Consider k̃ = (k2, k3, · · · , kn) where kα ∈ Z, α ∈
{2, 3, · · · , n}, specially we could consider kα ∈ [−2j, 2j] where j is the
scale parameter. In the following we show that

2j∑
k2=−2j

2j∑
k3=−2j

· · ·
2j∑

kn=−2j

ψ̂2(ξ̃ + k̃)|2 = 1. (1.4)

By definition of ψ̂2(ξ̃) we can write∑
k2

∑
k3

· · ·
∑
kn

|ψ̂2(ξ̃ + k̃)|2

=
∑
ki1

∑
ki2

· · ·
∑
knj

v(1− ξi1 + ki1) · · · v(1− ξini
+ kini

)v(1 + ξj1 + kj1) · · ·

v(1 + ξjnj
+ kjnj

)

=
∑
ki1

v(1− ξi1 + ki1) · · ·
∑
kini

v(1− ξini
+ kini

)
∑
kj1

v(1 + ξj1 + kj1) · · ·

∑
kjnj

v(1 + ξjnj
+ kjnj

)

= 1,
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(see Theorem 2.5 in [3] ) Moreover by (1.4) and Theorem 2.2 in [3] it
can be easily seen that ∑

j,k

|ψ̂j,k(ξ)|2 = 1.

where ξ = (ξ1, · · · , ξn), k = (k1, · · · , kn).
Now, we can proof the following theorem.

Theorem 1.2. The shearlet system {ψj,k,m}j,k,m in (1.1) with Defini-
tion 1.1 is a Parseval frame for L2(Rn).

Proof. Suppose f ∈ L2(Rn) and f̂ is Fourier transform of f , then we
have ∑

j,k,m

|⟨f, ψj,k,m⟩|2 =
∑
j,k,m

|⟨f̂ , ψ̂j,k,m⟩|2

=
∑
j,k,m

|
∫
Rn

f̂(ξ)ψ̂j,k,m(ξ)dξ|2

=
∑
j,k,m

|
∫
Rn

f̂(ξ)ψ̂j,k(ξ)e
i⟨m,ξ⟩dξ|2

=

∫
Rn

|f̂(ξ)|2
∑
j,k

|ψ̂j,k(ξ)|2dξ,

since
∑

j,k |ψ̂j,k(ξ)|2 = 1, as show in (1.4) , so∑
j,k,m

|⟨f̂ , ψ̂j,k,m⟩|2 =
∫
Rn

|f̂(ξ)|2dξ =
∫
Rn

|f(x)|2dx = ∥f∥2.

□

Now, we define ψ̃j,k,m as follows [8]

ψ̃j,k,m : Rn × R → C

ˆ̃ψj,k,m(ξ, t) = ψ̂j,k,m(ξ)e
±i|ξ|ct, (1.5)

where ψ is a classical shearlet. In the following, we represent {ψ̃j,k,m}j,k,m
be a Parseval frame.

Theorem 1.3. Let ψ ∈ L2(Rn) be a classical shearlet. The shearlet

system {ψ̃j,k,m}j,k,m is a Parseval frame.
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Proof. Suppose f ∈ L2(Rn), f̂ is Fourier transform of f and f̂(ξ, t) =

f̂(ξ)e±i|ξ|ct, then we have∑
j,k,m

|⟨f, ψ̃j,k,m⟩|2 =
∑
j,k,m

|⟨f̂ , ˆ̃ψj,k,m⟩|2

=
∑
j,k,m

|
∫
Rn

f̂(ξ)e±i|ξ|ctψ̂j,k,m(ξ)e
∓i|ξ|ctdξ|2

=
∑
j,k,m

|
∫
Rn

f̂(ξ)ψ̂j,k(ξ)e
i⟨m,ξ⟩dξ|2

=

∫
Rn

|f̂(ξ)|2
∑
j,k

|ψ̂j,k(ξ)|2dξ,

by [3], since
∑

j,k |ψ̂j,k(ξ)|2 = 1, then∑
j,k,m

|⟨f, ψ̃j,k,m⟩|2 = ∥f∥2.

□
Since {ψ̃j,k,m}j,k,m is a Parseval frame for L2(Rn), then we can write

f ∈ L2(Rn) as follows

f(x, t) =
∑
j,k,m

⟨f, ψ̃j,k,m⟩ψ̃j,k,m(x, t). (1.6)

We use Cj,k,m to show the shearlet coefficients ⟨f, ψ̃j,k,m⟩. In the next
section, we present a method to solving the n-dimensional heat equation
with the shearlet frame (1.5).

2. Main results

In this section, we present a method for solving n-dimensional heat
equation using shearlet frame. First, we consider n-dimensional heat
equation as

ut = c′2∆u, 0 ≤ xi ≤ ai, i = 1, · · · , n

u(x1, · · · , xi−1, 0, xi+1, · · · , xn, t) = u(x1, · · · , xi−1, ai, xi+1, · · · , xn, t) = 0,

0 ≤ xj ≤ aj, j ̸= i, t ≥ 0,
(2.1)

where ∆u =
n∑
i=1

(
∂2u

∂x2i
).
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Applying n-dimensional Fourier transform with respect to x yields

∂

∂t
Û(ξ, t) = −(ξ21 + · · ·+ ξ2n)Û(ξ, t). (2.2)

Then we consider

u(x, t) =
∑
j,k,m

Cj,k,mψ̃j,k,m(x, t), (2.3)

and

∆u(x, t) =
∑
j,k,m

C∆
j,k,mψ̃j,k,m(x, t),

where

Cj,k,m = ⟨u(x, t), ψ̃j,k,m(x, t)⟩

C∆
j,k,m = ⟨∆u(x, t), ψ̃j,k,m(x, t)⟩.

(2.4)

Applying n-D Fourier transform to (2.4) and using Plancherel theo-
rem yields

Û(ξ, t) =
∑
j,k,m

Cj,k,m
ˆ̃ψj,k,m(ξ, t)

∆̂U(ξ, t) =
∑
j,k,m

C∆
j,k,m

ˆ̃ψj,k,m(ξ, t).

(2.5)

By replacing Û and ∆̂U into (2.2), we obtain∑
j,k,m

Cj,k,m
∂

∂t
ˆ̃ψj,k,m(ξ, t) = c′

2
∑
j,k,m

C∆
j,k,m

ˆ̃ψj,k,m(ξ, t). (2.6)

∑
j,k,m

Cj,k,m(±i|ξ|c)ψ̂j,k,m(ξ)e∓i|ξ|ct = c′
2
∑
j,k,m

C∆
j,k,mψ̂j,k,m(ξ)e

∓i|ξ|ct.

(2.7)
Now, (2.7) can be rewritten as follows∑

j,k,m

[
±i|ξ|Cj,k,m − C∆

j,k,m

]
ψ̂j,k,m = 0, (2.8)

± i|ξ|Cj,k,m − C∆
j,k,m = 0. (2.9)
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By using the definition of Cj,k,m, C
∆
j,k,m and the Plancherel theorem, we

get

Cj,k,m =
1

(2π)n

∫
Rn

Û(ξ, t). ˆ̃ψj,k,m(ξ, t)dξ =
1

(2π)n

∫
Rn

Û(ξ).ψ̂j,k,m(ξ)dξ,

C∆
j,k,m =

1

(2π)n

∫
Rn

∆̂U. ˆ̃ψj,k,m(ξ, t)dξ

= − 1

(2π)n

∫
Rn

(ξ21 + · · ·+ ξ2n)Û(ξ).ψ̂j,k,m(ξ)dξ

= − 1

(2π)n

∫
Rn

(ξ21 + · · ·+ ξ2n)Û(ξ).ψ̂j,k(ξ)e
i⟨m,ξ⟩dξ.

(2.10)
Substituting ST−kA2−jξ with ξ, we have

Cj,k,m =
1

(2π)n

∫
Rn

A2jS
T
k

(
Û(ξ).ψ̂j,k(ξ)

)
ei⟨m,ξ⟩dξ,

C∆
j,k,m = − 1

(2π)n

∫
Rn

|A2jS
T
k ξ|2A2jS

T
k

(
Û(ξ).ψ̂j,k(ξ)

)
ei⟨m,ξ⟩dξ.

For simplicity, we consider Γ := A2jS
T
k

(
Û(ξ).ψ̂j,k(ξ)

)
, hence, Cj,k,m

and C∆
j,k,m can be rewritten as

Cj,k,m =
1

(2π)n

∫
Rn

Γei⟨m,ξ⟩dξ, (2.11)

and

C∆
j,k,m = − 1

(2π)n

∫
Rn

|A2jS
T
k ξ|2Γei⟨m,ξ⟩dξ. (2.12)
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Expanding |A2jS
T
k ξ|2 in the above relation yields

C∆
j,k,m = 2j[(2j + k2(n− 1))ξ21 + (1 + k2(n− 2))ξ22 + (1 + k2(n− 3))ξ23

+ · · ·+ (1 + k2)ξ2n−1 + ξ2n

+(2k + 2k2(n− 2))ξ1ξ2 + (2k + 2k2(n− 3))ξ1ξ3

+(2k + 2k2(n− 4))ξ1ξ4 + · · ·+ 2kξ1ξn

+(2k + 2k2(n− 3))ξ2ξ3 + (2k + 2k2(n− 4))ξ2ξ4

+ · · ·+ (2k)ξ2ξn+

...

+(2k)ξn−1ξn] = Θ(ξ).
(2.13)

So C∆
j,k,m can be rewritten as follows

C∆
j,k,m = − 1

(2π)n

∫
Rn

[Θ(ξ)]Γei⟨m,ξ⟩dξ,



10 AUTHORS

it could be seen that C∆
j,k,m is a combination of following terms

C∆
k1

= (2j + k2(n− 1))
∂2Cj,k,m

∂m2
1

+ (1 + k2(n− 2))
∂2Cj,k,m

∂m2
2

+ · · ·+ (1 + k2)
∂2Cj,k,m

∂m2
n−1

+
∂2Cj,k,m

∂m2
n

C∆
k1kn

= (2k + 2k2(n− 2))
∂2Cj,k,m

∂m1∂m2
+ (2k + 2k2(n− 3))

∂2Cj,k,m

∂m1∂m3

+ · · ·+ 2k
∂2Cj,k,m

∂m1∂mn

...

C∆
k2kn

= (2k + 2k2(n− 3))
∂2Cj,k,m

∂m2∂m3
+ (2k + 2k2(n− 4))

∂2Cj,k,m

∂m2∂m4

+ · · ·+ (2k)
∂2Cj,k,m

∂m2∂mn

...

C∆
kn−1kn

= (2k)
∂2Cj,k,m

∂mn−1∂mn
.

(2.14)
Replacing (2.14) in (2.9) leads to

∓ i|ξ|Cj,k,m − c′
2 [
C∆
k1
+ C∆

k1kn
+ C∆

k2kn
+ · · ·+ C∆

kn−1kn

]
= 0. (2.15)

Where (2.15) is the heat equation (2.1) in the shearlet domain, indeed.

By solving (2.15) for each j, k,m, we can obtain Û by substituting

Cj,k,m in (2.5). Finally by applying n-D inverse Fourier transform to Û
we can get the solution.

3. Example - Formulation for two-dimensional heat
equation

In this section, as an example of the developed procedure, we ob-
tain the shearlet formulation for the solution of two-dimensional heat
equation. First, we consider two-dimensional heat equation as

ut = c′
2
(uxx + uyy), 0 ≤ x < a, 0 ≤ y < b (3.1) u(0, y, t) = u(a, y, t) = 0, 0 ≤ y ≤ b, t ≥ 0

u(x, 0, t) = u(x, b, t) = 0, 0 ≤ x ≤ a, t ≥ 0
(3.2)
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For solving the above problem with shearlet system method, firstly,
we apply 2-D Fourier transform with respect to variables x,y to (3.1)
and get:

∂

∂t
Û(ξ1, ξ2) = −c′2(ξ21Û + ξ22Û). (3.3)

Then we consider

u(x, y, t) =
∑
j,k,m

Cj,k,mψ̃j,k,m(x, y, t),

and

∆u(x, y, t) =
∑
j,k,m

C∆
j,k,mψ̃j,k,m(x, y, t),

where Cj,k,m = ⟨u(x, y, t), ψ̃j,k,m(x, y, t)⟩ and C∆
j,k,m = ⟨∆u(x, y, t), ψ̃j,k,m(x, y, t)⟩.

Applying 2-D Fourier transform and using Plancherel theorem to
(3.3) yields

Û(ξ1, ξ2, t) =
∑
j,k,m

Cj,k,m
ˆ̃ψj,k,m(ξ1, ξ2, t) (3.4)

∆̂u(ξ1, ξ2, t) =
∑
j,k,m

C∆
j,k,m

ˆ̃ψj,k,m(ξ1, ξ2, t). (3.5)

By replacing Û and ∆̂u into (3.3), we obtain

± i|ξ|c
∑
j,k,m

Cj,k,m
ˆ̃ψj,k,m(ξ1, ξ2, t) = c′

2
∑
j,k,m

C∆
j,k,m

ˆ̃ψj,k,m(ξ1, ξ2, t). (3.6)

Now, (3.6) can be rewritten as follows∑
j,k,m

[
±i|ξ|cCj,k,m − c′

2
C∆
j,k,m

]
ˆ̃ψj,k,m = 0, (3.7)

with respect to the definition of Cj,k,m, C
∆
j,k,m and some properties of

inner product, we have∑
j,k,m

[
⟨±i|ξ|cu− c′

2
∆u, ˆ̃ψj,k,m⟩

]
ˆ̃ψj,k,m = 0. (3.8)

since {ψj,k,m}j,k,m is a parseval frame, it could be concluded

⟨±i|ξ|cu− c′
2
∆u, ˆ̃ψj,k,m⟩ = 0,

therefore

± i|ξ|cCj,k,m − c′
2
C∆
j,k,m = 0. (3.9)
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Now, by using the definition of Cj,k,m, C
∆
j,k,m and the Plancherel theo-

rem, we get

Cj,k,m = 1
(2π)2

∫
R2 û(ξ).ψ̂j,k(ξ)e

i⟨m,ξ⟩dξ, ξ = (ξ1, ξ2),

C∆
j,k,m = 1

(2π)2

∫
R2 ∆̂u.ψ̂j,k(ξ)e

i⟨m,ξ⟩dξ.

(3.10)

By using the Fourier transform property for the drivatives of function
u, we have

∆̂U = −ξ21Û − ξ22Û = −(ξ21 + ξ22)Û . (3.11)

Hence C∆
j,k,m can be rewritten as follows:

C∆
j,k,m = − 1

(2π)2

∫
R2

(ξ21 + ξ22)û(ξ) · ψ̂j,k(ξ)ei⟨m,ξ⟩dξ.

Now, by substituting ST−kA2−jξ with ξ, we have:

Cj,k,m =
1

(2π)2

∫
R2

A2jS
T
k

(
û(ξ).ψ̂j,k(ξ)

)
ei⟨m,ξ⟩dξ,

C∆
j,k,m = − 1

(2π)2

∫
R2

|A2jS
T
k ξ|2A2jS

T
k

(
û(ξ).ψ̂j,k(ξ)

)
ei⟨m,ξ⟩dξ.

For simplicity, we consider Γ := A2jS
T
k

(
û(ξ).ψ̂j,k(ξ)

)
, hence, Cj,k,m

and C∆
j,k,m can be rewritten as follows

Cj,k,m =
1

(2π)2

∫
Γei⟨m,ξ⟩dξ, (3.12)

and

C∆
j,k,m = − 1

(2π)2

∫
(22jξ21 + 2j(kξ1 + ξ2)

2) Γdξ

= − 1
(2π)2

∫
(22jξ21 + 2jk2ξ21 + 2j+1kξ1ξ2 + 2jξ22) Γdξ

= − 1
(2π)2

∫
2j (2jξ21 + k2ξ21 + 2kξ1ξ2 + ξ22) Γdξ

= − 2j

(2π)2

∫
((2j + k2)ξ21 + 2kξ1ξ2 + ξ22) Γdξ.

(3.13)
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It could be seen that C∆
j,k,m is a combination of the following terms

C∆
k1

= 2j(2j + k2)(
∂2Cj,k,m

∂m2
1

),

C∆
k2

= 2j(
∂2Cj,k,m

∂m2
2

),

C∆
k1,k2

= 2j(2k)(
∂2Cj,k,m

∂m1∂m2
).

(3.14)

Replacing (3.14) and (3.12) in (3.9) leads to

i|ξ|cCj,k,m = c′
2
2j

[
(2j + k2)(

∂2Cj,k,m
∂m2

1

) + (
∂2Cj,k,m
∂m2

2

) + (2k)(
∂2Cj,k,m
∂m1∂m2

)

]
.

(3.15)
Indeed, (3.15) is heat equation (3.1) in the shearlet domain.

Let A := 2j(2j + k2), B := k2j, D := 2j, then we have

B2 − AD = k222j − 2j(2j + k2)22j = −23j < 0,

which states that (3.15) is an elliptic partial differential equation. Now,
by solving the following time independent equation for each j, k,m,

i|ξ|cCj,k,m = c′
2

[
A(
∂2Cj,k,m
∂m2

1

) +D(
∂2Cj,k,m
∂m2

2

) + 2B(
∂2Cj,k,m
∂m1∂m2

)

]
.

(3.16)

We can obtain Û by substituting Cj,k,m in (3.4). Finally, by applying

2-D inverse Fourier transform to Û , we can get the solution.

4. Conclusion

A method for solution of n-dimensional transient heat equation by
making use of shearlet frames is presented and to better clarify the
method an example in two dimensions is presented. This approach is
general and can be employed for other PDE problems such as Poisson
and wave equation. As it was shown, in this approach the unknown
function is approximated by an expansion via shearlet frame expan-
sion and the coefficients of this expansion are obtained by employing
Fourier transformation and Planchere theorem. The main merit of this
approach is that for finding the unknown coefficients there is no need
to solve a system of simultaneous algebric equations and each of the
expansion coefficients can be obtained from a separte time independent
differential equation. This property is of extreme applicability impor-
tance as the user of the method can step by step increase the accuracy
of the solution to whatever degree that is satisfactory.



14 AUTHORS

References

1. Amin Khah, M., Askari Hemmat, A. and Raisi Tousi, R. Integral representation
for solutions of the wave equation by shearlets, Optik-International Journal for
Light and Electron Optics, 127(22), 10554–10560 (2016).

2. G. Chen, Semi-analytical solutions for 2-D modeling of long pulsed laser heat-
ing metals with temperature dependent surface absorption, Optik, International
Journal for Light and Electron Optics, 2017.

3. S. Dahlke, S. Hauser, G. Steidl and G. Teschke, Shearlet coorbit spaces: traces
and embeddings in higher dimensions. Monatshefte fur Mathematik, 169(1), 15-
32 (2013).

4. W. Dai and R. Nassar, A compact finite difference scheme for solving a three-
dimensional heat transport equation in a thin film, Numer. Methods Partial
Differ. Equ., 16, 441–458 (2000).

5. B. Fornberg A Practical Guide to Pseudospectral Methods. Cambridge Univer-
sity Press, Cambridge, UK (1996).

6. K. Guo, G. Kutyniok, D. Labate, Sparse multidimensional representations using
anisotropic dilation and shear operators, Wavelets and Splines, Nashboro Press,
Nashville, 189201 (2006).

7. J. Hesthaven, S. Gottlieb and D. Gottlieb, ”Spectral methods for time-dependent
problems”, Cambridge UP, Cambridge, UK (2007) .

8. Kaiser, G. A Friendly Guide to Wavelets, Boston: Birkhauser, (1994).
9. Z. Kalateh Bojdi and A. Askari Hemmat, Wavelet collocation methods for solv-

ing the Pennes bioheat transfer equation, Optik, International Journal for Light
and Electron Optics, 132, 80–88 (2017).

10. Z. Kargar and H. Saeedi, B-spline wavelet operational method for numerical
solution of time-space fractional partial differential equations, Int. J. Wavelets
Multiresolut. Inf. Process., 15, 1750034 (2017).

11. A. Kaw and E. Eric Kalu, Numerical Methods with Applications, Contains a
brief, engineering-oriented introduction to FDM (for ODEs) in Chapter 08.07
(2008).

12. G. Kutyniok, D. Labate, Shearlets: Multiscale analysis for multivariate data,
Springer Science & Business Media, 330 (2012).

13. G. Kutyniok, J. Lemvig and W. Q. Lim, Optimally sparse approximations of
3D functions by compactly supported shearlet frames, SIAM Journal on Math-
ematical Analysis, 44(4), 29623017 (2012).

14. K.W. Morton and D.F. Mayers, Numerical Solution of Partial Differential Equa-
tions, An Introduction. Cambridge University Press, (2005).

15. J. N. Reddy, An Introduction to the Finite Element Method (Third ed.).
McGraw-Hill. ISBN 9780071267618 (2006).

16. G.D. Smith, Numerical Solution of Partial Differential Equations Finite Differ-
ence Methods, Third ed., Oxford, Oxford University Press, (1985).

17. J. Strikwerda, Finite Difference Schemes and Partial Differential Equations
(2nd ed.). SIAM. ISBN 978-0-89871-639-9 (2004).

18. B. Sun, et al., Solving wave equations in the curvelet domain: A multi-scale
and multi-directional approach, Journal of Seismic Exploration, 18(4), 385–399
(2009).



A SHEARLET APPROACH TO... 15

19. WH. Teukolsky, SA. Vetterling, WT. Flannery, ”Section 20.7. Spectral Meth-
ods”. Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York:
Cambridge University Press. ISBN 978-0-521-88068-8 BP (2007).

20. O. C. Zienkiewicz, Robert L Taylor, J.Z. Zhu The Finite Element Method: Its
Basis and Fundamentals. Butterworth-Heinemann. ISBN 978-0-08-095135-5 (31
August 2013).


	1. Introduction
	2. Main results
	3. Example - Formulation for two-dimensional heat equation
	4. Conclusion
	References

