On cyclic strongly quasi-contraction maps
On cyclic strongly quasi-contraction maps
نویسندگان :
اکرم صفری هفشجانی ( دانشگاه پیام نور )
چکیده
Let $A$ and $B$ be nonempty subsets of a metric space $(X,d)$ and self mapping $T:Acup B o Acup B$ be a cyclic map. In 2013 Amini-Harandi [`Best proximity point theorems for cyclic strongly quasi-contraction mappings , J. Global Optim. 56 (2013), 1667-1674] introduced the notion of maps called cyclic strongly quasi-contraction, with adding the condition % egin{align}label{I0} d(T^2x,T^2y) leq c~d(x, y)+(1-c)d(A,B) onumber \ ~~~for~ all ~xin A ~and ~yin B~ where~ cin [0, 1),~~~ ag{I} end{align} to cyclic quasi-contraction maps and proved an existence result of best proximity point theorem. The author also posed the question that does this theorem remains true for cyclic quasi-contraction maps? % %In 2016, Due to the author s errors in proving results, Dung and Radenovic without proving or rejecting theorem of Amini-Harandi, introduced a modified version of it. % In 2017, Dung and Hang gave negative answer to question of Amini-Harandi and decided to prove his theorem. But they had mistakes in proving theorem. % In this paper, first we show that the condition eqref{I0} is so strong that theorem of Amini-Harandi (and so modified version of it) is correct by using it alone.کليدواژه ها
best proximity point; fixed point; cyclic and noncyclic contraction maps; uniformly convex Banach spaceکد مقاله / لینک ثابت به این مقاله
برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است :نحوه استناد به مقاله
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:اکرم صفری هفشجانی , 1398 , On cyclic strongly quasi-contraction maps , ششمين سمينار آناليز تابعي و كاربردهاي آن
دیگر مقالات این رویداد
© کلیه حقوق متعلق به دانشگاه اصفهان میباشد.